HAZARD MITIGATION PLAN Lee County March 2017

Prepared For: Lee County Office of Emergency Management 898 East Richmond Giddings, Texas 78942

Lee County HAZARD MITIGATION PLAN UPDATE

MARCH 2017

Prepared for:

Lee County Office of Emergency Management 898 East Richmond Giddings, TX 78942

and

Texas Colorado River Floodplain Coalition P.O. Box 2533 1511 Main Street Cedar Park, TX 78613-9998

Lee County Hazard Mitigation Plan Update

TABLE OF CONTENTS	3
	-

6.1 Historica	l Overview	6-2
6.2 Major Pa	st Hazard Events	6-3
6.3 Climate.		6-4
6.4 Geology	and Soils	6-10
6.5 Critical I	Facilities and Infrastructure	6-12
6.6 Demogra	phics	6-20
6.6.1	Population	6-20
6.6.2	Age Distribution	6-22
6.6.3	Disabled Populations	6-22
6.6.4	Ethnic Populations	
6.7 Economy	/	6-24
6.7.1	Income	6-24
6.7.2	Employment Trends	6-24
6.7.3	Occupations and Industries	6-26
	n Development	6-26
6.8.1	Lee County	6-27
6.8.2	City of Giddings	6-27
6.8.3	City of Lexington	6-28
	1 Ordinances	
6.9.1	Federal	6-30
6.9.2	State and Regional	6-31
6.9.3	Lee County	
6.9.4	City of Giddings	6-36
6.9.5	City of Lexington	6-39
Chapter 7.	Hazard Mitigation Capabilities Assessment	7-1
	nty	
7.1.1	Legal and Regulatory Capabilities	
7.1.2	Administrative and Technical Capabilities	
7.1.3	Financial Capabilities	
	biddings	
7.2.1	Legal and Regulatory Capabilities	
7.2.2	Administrative and Technical Capabilities	
7.2.3	Financial Capabilities	
	exington	
7.3.1	Legal and Regulatory Capabilities	
7.3.2	Administrative and Technical Capabilities	
7.3.3	Financial Capabilities	

PART 2 RISK ASSESSMENT

Chapter 8. Expansive Soils	8-1
8.1 General Background	
8.2 Hazard Profile	
8.2.1 Past Events	
8.2.2 Location	
8.2.3 Frequency	
8.2.4 Severity	
8.2.5 Warning Time	
8.3 Secondary Hazards	
8.4 Climate Change Impacts	
8.5 Exposure	

8.5.1	Population	
8.5.2	Property	
8.5.3	Critical Facilities and Infrastructure	
8.5.4	Environment	
8.6 Vulnerab	ility	
8.6.1	Population	
8.6.2	Property	
8.6.3	Critical Facilities and Infrastructure	
8.6.4	Environment	
8.7 Future Tr	rends in Development	
8.8 Scenario		
8.9 Issues		
Chapter 9.	Dam/Levee Failure	9-1
	Background	
9.1.1	Dams	
9.1.2	Levees	
9.1.3	Causes of Dam Failure	
9.1.4	Causes of Levee Failure	
9.1.5	Regulatory Oversight	
	rofile	
9.2.1	Past Events	
9.2.2	Location	
9.2.3	Frequency	
9.2.4	Severity	
9.2.5	Warning Time	
	y Hazards	
	Change Impacts	
9.5.1	Population	
9.5.2	Property	
9.5.3	Critical Facilities and Infrastructure	
9.5.4	Environment	
9.6 Vulnerab	ility	
9.6.1	Population	
9.6.2	Property	
	rends in Development	
	*	
9.9 Issues		
Chanter 10	. Drought and Extreme Heat	10-1
	Background	
	Drought	
	Extreme Heat	
	Profile	
	Past Events	
	Location	
	Frequency	
	Severity	
	Warning Time	
	ary Hazards	
	Change Impacts	
	O 1	

10.5 Exposure	
10.6 Vulnerability	
10.6.1 Population	
10.6.2 Property	
10.6.3 Critical Facilities	
10.6.4 Environment	
10.6.5 Economic Impact	
10.7 Future Trends in Development	
10.8 Scenario	
10.9 Issues	
Chapter 11. Earthquake	11-1
11.1 General Background	
11.1.1 How Earthquakes Happen	
11.1.2 Earthquake Classifications	
11.1.3 Ground Motion	
11.1.4 Effect of Soil Types	
11.2 Hazard Profile	
11.2.1 Past Events	
11.2.2 Location	
11.2.3 Frequency	
11.2.4 Severity	
11.2.5 Warning Time	
11.3 Secondary Hazards	
11.4 Climate Change Impacts	
11.5 Exposure	
11.5.1 Population	
11.5.2 Property	
11.5.3 Critical Facilities and Infrastructure	11-13
11.5.4 Environment	
11.6 Vulnerability	
11.7 Future Trends in Development	
11.8 Scenario.	
11.9 Issues	
Chapter 12. Flood	
12.1 General Background	
12.1.1 Flood	
12.1.2 Floodplain	
12.1.3 Measuring Floods and Floodplains	
12.1.4 Floodplain Ecosystems.	
12.1.5 Effects of Human Activities	
12.2 Hazard Profile	
12.2.1 Past Events	
12.2.2 Location	
12.2.3 Frequency	
12.2.4 Severity	
12.2.5 Warning Time	
12.3 Secondary Hazards	
12.4 Climate Change Impacts	
12.5 Exposure	
12.5.1 Population	

12.5.2 Property	
12.5.3 Critical Facilities and Infrastructure	.12-23
12.5.4 Environment	.12-25
12.6 Vulnerability	.12-25
12.6.1 Population	.12-25
12.6.2 Property	.12-26
12.6.3 Critical Facilities and Infrastructure	.12-30
12.6.4 Environment	
12.7 Future Trends in Development	.12-30
12.8 Scenario	
12.9 Issues	
Chapter 13. Hurricanes and Tropical Storms	
13.1 General Background	
13.1.1 Hurricanes and Tropical Storms	
13.1.2 Hurricane and Tropical Storm Classifications	
13.2 Hazard Profile	
13.2.1 Past Events	
13.2.2 Location	
13.2.3 Frequency	
13.2.4 Severity	
13.2.5 Warning Time	13-7
13.3 Secondary Events	13-7
13.4 Climate Change Impacts	13-7
13.5 Exposure	13-7
13.6 Vulnerability	13-8
•	
13.7 Future Trends in Development	.13-12
•	.13-12 .13-12
13.7 Future Trends in Development13.8 Scenario	.13-12 .13-12 .13-12
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 .13-12
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 13-12 14-1 14-1 14-1
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13
 13.7 Future Trends in Development 13.8 Scenario. 13.9 Issues. Chapter 14. Lightning, Hail, and Wind 14.1 General Background 14.1.1 Lightning, Hail, and Wind 14.1.2 Lightning. 14.1.3 Hail. 14.1.4 Wind 14.2 Hazard Profile 14.2.1 Past Events 	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-3 14-5 14-9 .14-13 .14-13
 13.7 Future Trends in Development 13.8 Scenario. 13.9 Issues. Chapter 14. Lightning, Hail, and Wind 14.1 General Background 14.1.1 Lightning, Hail, and Wind 14.1.2 Lightning. 14.1.3 Hail. 14.1.4 Wind 14.2 Hazard Profile 14.2.1 Past Events 14.2.2 Location 	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-3 14-5 14-9 .14-13 .14-13 .14-21
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25
 13.7 Future Trends in Development 13.8 Scenario. 13.9 Issues. Chapter 14. Lightning, Hail, and Wind 14.1 General Background 14.1.1 Lightning, Hail, and Wind 14.1.2 Lightning. 14.1.3 Hail. 14.1.4 Wind 14.2 Hazard Profile 14.2.1 Past Events 14.2.2 Location 	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26 .14-26
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26 .14-27
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-3 14-5 14-9 .14-13 .14-13 .14-25 .14-25 .14-25 .14-26 .14-26 .14-27 .14-27 .14-27
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26 .14-26 .14-27 .14-27 .14-27
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-3 14-5 14-9 .14-13 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26 .14-26 .14-27 .14-27 .14-27 .14-28
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26 .14-26 .14-27 .14-27 .14-27 .14-27 .14-28 .14-28
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-21 .14-25 .14-25 .14-26 .14-26 .14-26 .14-27 .14-27 .14-27 .14-28 .14-28 .14-28
 13.7 Future Trends in Development	.13-12 .13-12 .13-12 14-1 14-1 14-1 14-3 14-5 14-9 .14-13 .14-13 .14-25 .14-25 .14-26 .14-26 .14-26 .14-26 .14-27 .14-27 .14-27 .14-27 .14-28 .14-28 .14-28 .14-28

14.6.3 Critical Facilities and Infrastructure	
14.6.4 Environment	
14.7 Future Trends in Development	
14.8 Scenario	14-33
14.9 Issues	
Chapter 15. Tornado	15-1
15.1 General Background	
15.2 Hazard Profile	
15.2.1 Past Events	
15.2.2 Location	
15.2.3 Frequency	
15.2.4 Severity	
15.2.5 Warning Time	
15.3 Secondary Hazards	
15.4 Climate Change Impacts	
15.5 Exposure	
15.5.1 Population	
15.5.2 Property	
15.5.3 Critical Facilities and Infrastructure	
15.5.4 Environment.	
15.6 Vulnerability	
15.6.1 Population	
15.6.2 Property	
15.6.3 Critical Facilities and Infrastructure	
15.6.4 Environment	
15.7 Future Trends in Development	
15.8 Scenario	
15.9 Issues	
Chapter 16. Wildfire	
16.1 General Background	
16.2 Hazard Profile	
16.2.1 Past Events	
16.2.2 Location	16-8
16.2.3 Frequency	
16.2.4 Severity	
16.2.5 Warning Time	16-17
16.3 Secondary Hazards	
16.4 Climate Change Impacts	
16.5 Exposure	
	1 < 10
16.5.1 Population	16-18
16.5.1 Population	
16.5.2 Property16.5.3 Critical Facilities and Infrastructure	
16.5.2 Property16.5.3 Critical Facilities and Infrastructure16.5.4 Environment	
 16.5.2 Property 16.5.3 Critical Facilities and Infrastructure 16.5.4 Environment 16.6 Vulnerability 	
16.5.2 Property16.5.3 Critical Facilities and Infrastructure16.5.4 Environment	
 16.5.2 Property	
 16.5.2 Property	
 16.5.2 Property	
16.5.2 Property	

Chapter 17. Winter Weather17-1
17.1 General Background
17.1.1 Extreme Cold
17.1.2 Ice and Snow
17.2 Hazard Profile
17.2.1 Past Events
17.2.2 Location
17.2.3 Frequency
17.2.4 Severity
17.2.5 Warning Time
17.3 Secondary Hazards
17.4 Climate Change Impacts
17.5 Exposure
17.5.1 Population
17.5.2 Property
17.5.3 Critical Facilities and Infrastructure
17.5.4 Environment
17.6 Vulnerability
17.6.1 Population
17.6.2 Property
17.6.3 Critical Facilities and Infrastructure
17.6.4 Environment
17.7 Future Trends in Development
17.8 Scenario
17.9 Issues
Chapter 18. Planning Area Risk Ranking18-1
18.1 Probability of Occurrence
18-2 Impact
18-2 18.3 Risk Rating and Ranking
10.5 Kisk Ruung and Runking

PART 3 MITIGATION AND PLAN MAINTENANCE STRATEGY

•	Area-Wide Mitigation Actions and Implementation	
	Cost Review and Prioritization	
Chapter 20.	Plan Adoption and Maintenance	20-1
	option	
20.2 Plan Ma	intenance Strategy	
	Plan Implementation	
20.2.2	Steering Committee	
20.2.3	Plan Maintenance Schedule	
20.2.4	Annual Progress Report	
20.2.5	Plan Update	
20.2.6	Continuing Public Involvement	
	Incorporation into Other Planning Mechanisms	

LIST OF TABLES

3.7		
No.	Title	Page No.
	.Recommended Mitigation Actions	
	Hazards Evaluated in the 2011-2016 TCRFC Multi-Jurisdictional Hazard Mitig	
	Lee County Project Implementation Worksheet (Update of 2011-2016 TCRFC Pla	- /
	Oreantes en 1 Oltes Directiones Destaurant	
	County and City Planning Partners	
	Steering Committee Members Plan Development Milestones	
$\begin{bmatrix} able 5 - 5 \\ able 6 \end{bmatrix}$	Federal Disaster Declarations in Lee County	
	Lee County Temperature Summaries Lexington Station	
	Critical Facilities in the Planning Area	
	Critical Infrastructure in the Planning Area	
	Lee County Demographic and Social Characteristics (2010)	
	Lee County Population	
	Lee County Economic Characteristics	
	Present Land Use in Planning Area	
	Lee County Regulatory Mitigation Capabilities Matrix	
	Lee County Administrative/Technical Mitigation Capabilities Matrix	
	Lee County Financial Mitigation Capabilities Matrix	
	City of Giddings Regulatory Mitigation Capabilities Matrix	
	City of Giddings Administrative/Technical Mitigation Capabilities Matrix	
	City of Giddings Financial Mitigation Capabilities Matrix	
	City of Lexington Regulatory Mitigation Capabilities Matrix	
able 7-8.	City of Lexington Administrative/Technical Mitigation Capabilities Matrix	7-7
able 7-9.	City of Lexington Financial Mitigation Capabilities Matrix	7-8
Table 8-1 I	Exposed Structures and Population	8-3
	Vulnerable Population	
	Loss Estimates for Expansive Soils	
	Dam Counts and Exemptions	
	USACE Hazard Potential Classification	
	TCEQ Hazard Potential Classification	
	Lee County and Participating Communities Dam Extents	
	Exposed Structures and Population	
	Vulnerable Population	
	Loss Estimates for Dam Breach	
	. Temperature Data from Lexington Weather Station	
	. Historic Drought Events in lee County (1996-2014)	
	. Exposed Structures and Population for Drought	
	Loss Estimates for Drought Events	
	. Mercalli Scale and Peak Ground Acceleration Comparison	
	. NEHRP Soil Classification System	
	. Exposed Structures and Population for Earthquake	
	. Historic Flood Events in Lee County and Participating Communities (1996-2014)	
	Acreage in the 100-Year and 500-Year Floodplain by Jurisdiction	
	. Extent Scale – Water Depth	
	Present Land Use in the 100-Year Floodplain	
	Present Land Use in the 500-Year Floodplain	

Table 12-6. Structures and Population in the 100-Year Floodplain	12-22
Table 12-7. Structures and Population in the 500-Year Floodplain	12-22
Table 12-8. Value of Structures in 100-Year Floodplain	12-23
Table 12-9. Value of Structures in 500-Year Floodplain	12-23
Table 12-10. Critical Facilities and Infrastructure in the 100-Year Floodplain	
Table 12-11. Critical Facilities and Infrastructure in the 500-Year Floodplain	
Table 12-12. Loss Estimates for the 100-Year Flood Event	
Table 12-13. Loss Estimates for the 500-Year Flood Event	
Table 12-14. National Flood Insurance Program Statistics	
Table 13-1. Saffir-Simpson Hurricane Wind Scale	
Table 13-2. Exposed Structures and Population	
Table 13-3. Vulnerable Population	
Table 13-4. Loss Estimates for Hurricane Event	
Table 14-1. National Weather Service Hail Severity	
Table 14-2. Historic Hail Events in Lee County and Participating Communities (1955-2014)	
Table 14-3. Wind Power Class and Speed	
Table 14-4. Historic Wind-Related Events in Lee County and Participating Communities (1950-201	
21	<i>+)</i> .1+-
Table 14-5 Exposed Structures and Population	1/ 28
Table 14-5. Vulnerable Population	
Table 14-0. Vulnerable Population	
Table 14-8. Loss Estimates for Lightning Events in Lee County and Participating Communities	
Table 14-9. Loss Estimates for Wind Events in Lee County and Participating Communities	
Table 15-1. Enhanced Fujita Scale Damage Indicators Table 15-2. The Damage Indicators	
Table 15-2. The Fujita Scale and Enhanced Fujita Scale. Table 15-2. We will be a scale and Enhanced Fujita Scale.	
Table 15-3. Historic Tornado Events in Lee County and Participating Communities (1950-2014)	
Table 15-4 Exposed Structures and Population	
Table 15-5 Most Vulnerable Population	
Table 15-6. Loss Estimates for Tornado Events	
Table 16-1. Fire Protection Services in Lee County and Participating Communities	
Table 16-2. Vegetation Classes in Lee County and Participating Communities	
Table 16-3. Historic Wildfire Events in Lee County and Participating Communities (50+ Acres)	
2014)	
Table 16-4. Population within Wildfire Risk Areas	
Table 16-5. Exposure and Value of Structures in Very Low Wildfire Risk Areas	
Table 16-6. Exposure and Value of Structures in Low Wildfire Risk Areas	.16-19
Table 16-7. Exposure and Value of Structures in Moderate Wildfire Risk Areas	
Table 16-8. Exposure and Value of Structures in High Wildfire Risk Areas	.16-20
Table 16-9. Exposure and Value of Structures in Very High Wildfire Risk Areas	.16-21
Table 16-10. Wildfire Risk Areas in Present Land Coverage for Lee County	
Table 16-11. Critical Facilities and Infrastructure per Wildfire Risk Class	
Table 16-12. Loss Estimates for Wildfire Events	
Table 17-1. Temperature Data (°F) from Lee, Texas Station (418415)	17-2
Table 17-2. Historic Winter Weather Events in Lee County and Participating Communities (1996	
	17-6
Table 17-3. Exposed Structures and Population	
Table 17-4. Winter Weather – Most Affected Population	
Table 17-5. Loss Estimates for Winter Storm Events	
Table 18-1. Hazard Probability of Occurrence	
Table 18-2. Impact on People from Hazards	
Table 18-3. Impact on Property from Hazards	

Table 18-4. Impact on Economy from Hazards	
Table 18-5. Hazard Risk Ranking Calculations	
Table 18-6. Hazard Risk Summary	
Table 19-1. Mitigation Actions Developed to Address Hazards	
Table 19-2. Recommended Mitigation Actions	19-7
Table 20-1. Incorporation of Mitigation Activities	

LIST OF FIGURES

No. Title	Page No.
Figure 3-1. Lee County Planning Area and Participating Communities	3-3
Figure 3-2. Sample Page from Questionnaire Distributed to the Public	3-8
Figure 3-3. Steering Committee Meeting September 9, 2015	
Figure 6-1. Location of the Lee County Planning Area within the State of Texas	
Figure 6-2. Lexington Station Monthly Temperature Data (1984-2013)	
Figure 6-3. Annual Average Maximum Temperature (1981-2010)	
Figure 6-4. Annual Average Minimum Temperature (1981-2010)	
Figure 6-5. Average Monthly Precipitation (1948-2013)	
Figure 6-6. Geographic Distribution of Annual Average Precipitation (1981-2010)	
Figure 6-7. Natural Regions of Texas and Lee County	
Figure 6-8. Critical Facilities in Lee County	
Figure 6-9. Critical Infrastructure in Lee County	
Figure 6-10. Critical Facilities in the City of Giddings	
Figure 6-11. Critical Infrastructure in the City of Giddings	
Figure 6-12. Critical Facilities in the City of Lexington	
Figure 6-13. Critical Infrastructure in the City of Lexington	
Figure 6-14. State of Texas and Lee County Population Growth	
Figure 6-15. Lee County Age Distribution	
Figure 6-16. Lee County Ethnic Distribution	
Figure 6-17. Lee County Unemployment Rate (2003-2013)	
Figure 6-18. Percent of Total Employment by Industry in Lee County	
Figure 6-19. Population of City of Giddings	
Figure 6-20. Residential Building Permits in the City of Giddings	
Figure 6-21. Population of City of Lexington.	
Figure 6-22. Residential Building Permits in the City of Lexington	
Figure 8-1. Expansive Soil Regions	
Figure 9-1. TCEQ Dam Definition	
Figure 9-2. Primary Purpose/Benefit of U.S. Dams	
Figure 9-3. Locations of Dams in Lee County	
Figure 9-4. U.S. Levee Systems	
Figure 9-5. Texas Counties with Levees	
Figure 9-6. Texas County Population Exemptions for Dams	9-11
Figure 9-7. Lake Somerville Water Surface Elevation During the May 2015 Precipitation Even	nt 9-12
Figure 9-8. Lake Travis Water Surface Elevation During the May 2015 Precipitation Event	
Figure 9-9. Locations of Dams in Lee County	
Figure 10-1. Heat Index Table	
Figure 10-2. U.S. Drought Monitor, March 27, 2012	
Figure 10-3. U.S. Drought Monitor, March 17, 2015	
Figure 10-4. U.S. Drought Monitor, June 16, 2015	
Figure 10-5. Crop Moisture Index (Week Ending March 28, 2015)	
Figure 10-6. Palmer Z Index Short-Term Drought Conditions (March 2015)	
Figure 10-7. Palmer Drought Severity Index (March 2015)	
Figure 10-8. Palmer Drought Severity Index (Maren 2015)	
Figure 10-9. Palmer Hydrological Drought Index Long-Term Hydrologic Conditions (March 2	
Figure 10-9.1 united Hydrological Drought index Long Term Hydrologic Conditions (Watern 2 Figure 10-10. 24-Month Standardized Precipitation Index (through February 2015)	
Figure 10-10. USDA Census of Agriculture Lee County Profile 2012	
Figure 11-1. Texas Earthquakes (1847-2015)	
1.5.12 11 1. 1. 2. a. 2. 2. a.	

Figure 11-2. Probabilistic Earthquake Hazard Map for the U.S.	11-7
Figure 11-3. Peak Ground Acceleration (10% Probability of Exceedance in 50-Year Map of Peak	Ground
Acceleration)	11-10
Figure 11-4. 500-Year Probability Event in Lee County	11-11
Figure 12-1. Number of Flash Floods in Texas per County (1986-1999)	12-3
Figure 12-2. Number of Storm Centers by County	12-4
Figure 12-3. Middle Yegua Creek Flow and Flood Stage During the May 2015 Flood Event	12-9
Figure 12-4. Flash Flood Events in Lee County and Participating Communities	
Figure 12-5. Special Flood Hazard Areas in Lee County	
Figure 12-6. Special Flood Hazard Areas in the City of Giddings	12-13
Figure 12-7. Special Flood Hazard Areas in the City of Lexington	12-14
Figure 12-8. Flood Depths in Lee County	
Figure 12-9. Flood Depths in City of Giddings	12-17
Figure 12-10. Flood Depths in the City of Lexington	12-18
Figure 12-11. Repetitive Loss Properties in Lee County	
Figure 13-1. Historical Hurricane Paths Affecting Lee County	
Figure 13-2. Historical Tropical Storms and Hurricanes Affecting Lee County	
Figure 13-3. Probability of Named Tropical Storm Event	
Figure 13-4. 100-Year Probabilistic Peak Wind Gusts for Lee County	
Figure 14-1. Thunderstorm Life Cycle	
Figure 14-2. Average Annual National Lightning Density	
Figure 14-3. National Hail Paths.	
Figure 14-4. National Hail Days per Year	14-8
Figure 14-5. National Wind Zones	14-10
Figure 14-6. National High Wind Paths	14-11
Figure 14-7. National Annual High Wind Days	14-12
Figure 14-8. Lightning Fatalities in the U.S. (1959-2013)	14-14
Figure 14-9. Texas Wind Power	
Figure 14-10. Hail Events in Lee County (1955-2014)	14-23
Figure 14-11. Damaging Wind Events in Lee County (1955-2014)	14-24
Figure 14-12. Severe Weather Probabilities in Warmer Climates	14-27
Figure 15-1. Annual Average Number of Tornadoes in the U.S. (1991-2010)	15-3
Figure 15-2. Total Annual Threat of Tornado Events in the U.S. (1980-1999)	15-4
Figure 15-3. Tornado Paths in the U.S. (1950-2014)	15-7
Figure 15-4. Tornado Activity in the U.S. (1950-2014)	15-8
Figure 15-5. Tornado Events in Lee County (1950-2014)	15-9
Figure 16-1. Vegetation Types in Lee County and Participating Communities	16-3
Figure 16-2. Wildfires in Lee County and Participating Communities (1980-2014)	16-5
Figure 16-3. Wildfires in City of Giddings (1980-2014)	16-6
Figure 16-4. Wildfires in City of Lexington (1980-2014)	16-7
Figure 16-5. Lee County and Participating Communities Wildfire Ignitions Distribution	16-9
Figure 16-6. Lee County and Participating Communities Wildland Urban Interface	16-10
Figure 16-7. Lee County and Participating Communities Wildland Urban Interface Response Index	.16-11
Figure 16-8. Lee County and Participating Communities Wildfire Values Response Index	16-12
Figure 16-9. Lee County and Participating Communities Wildfire Community Protection Zones	
Figure 16-10. Lee County and Participating Communities Wildfire Hazard Potential	
Figure 16-11. City of Giddings Wildfire Hazard Potential	
Figure 16-12. City of Lexington Wildfire Hazard Potential	
Figure 17-1. National Weather Service Wind Chill Chart	17-2
Figure 19-1. Blank Mitigation Action Worksheet	
Figure 19-2. Example Benefit/Cost Review and Prioritization Worksheet	19-4

LIST OF APPENDICES

Appendix A. Acronyms and Definitions

Appendix B. Local Mitigation Plan Review Tool

Appendix C. Public Outreach

Appendix D. Plan Adoption Resolutions from Planning Partners

Appendix E. Example Progress Report

ACKNOWLEDGMENTS AND CONTACTS

Lee County

Mr. Delynn Peschke Emergency Management Coordinator Phone: (979) 540-2081 Email: emc@co.lee.tx.us

Texas Colorado River Floodplain Coalition

Mr. Mickey Reynolds Executive Director Phone: (979) 533-8683 Email: TCRFC@att.net

Consultants

JSW & Associates, Jeff S. Ward

Halff Associates, Cindy J. Engelhardt

Tetra Tech, Inc., Laura D. Johnston

Lee County Hazard Mitigation Plan Update

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The D isaster M itigation A ct of 2000 (DMA) is federal legislation that requires proactive, pre-disaster planning a s a pr erequisite f or s ome f unding a vailable under the R obert T. Stafford A ct. The D MA encourages state and local authorities to work together on pre-disaster planning. The planning network called for by the DMA helps local governments articulate accurate needs for mitigation, resulting in faster allocation of funding and more cost-effective risk reduction projects.

Hazard mitigation is the use of long- and short-term strategies to reduce or alleviate the loss of life, personal injury, and property damage that can result from a disaster. It involves strategies such as planning, policy changes, programs, projects, and other activities that can mitigate the impacts of hazards. It is impossible to predict exactly when and where disasters will occur or the extent to which they will impact an area. However, with careful planning and collaboration among public agencies, stakeholders, and citizens, it is possible to minimize losses that disasters can cause. The responsibility for hazard mitigation lies with many, including private property owners; business and industry; and local, state, and federal government.

Lee County and a partnership of local governments within the county have developed and maintained a hazard mitigation plan to reduce risks from natural disasters and to comply with the DMA.

PLAN UPDATE

Federal regulations require monitoring, evaluation, and updating of hazard mitigation plans. An update provides an opportunity to reevaluate recommendations, monitor the impacts of implemented actions, and evaluate whether there is a need to change the focus of mitigation strategies. A jurisdiction covered by a hazard mitigation plan that has expired is no longer in compliance with the DMA.

Lee County and its communities participated in previous hazard mitigation plans as part of the Texas Colorado River Floodplain Coalition (TCRFC). The TCRFC is a non-profit, 501(c)(3) organization formed in June 2001 by the cities and counties of the Lower Colorado River Authority (LCRA) in response to flood devastation requiring more c oordinated da mage pr evention e fforts. In 2004, t he T CRFC de veloped a Hazard Mitigation Action Plan entitled *Creating a Disaster Resistant Lower Colorado River Basin*, which was ap proved by the F ederal E mergency M anagement A gency (FEMA) in 2 004. In 2011, TCRFC completed the *TCRFC Multi-Jurisdictional Hazard Mitigation Plan Update 2011-2016* as a regional partnership of 15 counties (including Lee County) and 63 j urisdictions. T he 2011 -2016 upda te w as completed with technical support from the LCRA and the outside consultant team of H20 Partners, Inc., and PBS&J.

This Plan was developed to be specific to Lee County and its participating communities: the Cities of Giddings and Lexington.

The development of this hazard mitigation plan consisted of the following phases:

- Phase 1: Organize and Review—A planning team was assembled to provide technical support for the plan update, consisting of TCRFC representatives, key county and city staff, and a team of technical consultants. The first step in developing the plan update was to re-establish a planning partnership. Planning partners participating in t he update w ere the C ities of Giddings and Lexington. A Steering Committee w as as sembled to o versee the plan up date, c onsisting of planning partner staff and community representatives from the planning area. Coordination with other county, state, and federal agencies involved in hazard mitigation occurred throughout the plan update process. This phase included a comprehensive review of the previous *TCRFC MultiJurisdictional Hazard Mitigation Plan Update 2011-2016*, a nd e xisting pr ograms t hat m ay support or enhance hazard mitigation actions.
- **Phase 2: Update the Risk Assessment**—Risk ass essment is the process of measuring the potential loss of life, personal injury, e conomic impact, and property da mage resulting from

natural hazards. This process assesses the vulnerability of people, buildings, and infrastructure to natural hazards. All facets of the risk assessment of the plan were re-visited by the planning team and updated with the best available data and technology. The work included the following:

- Hazard identification and profiling
- Assessment of the impact of hazards on physical, social, and economic assets
- Vulnerability identification
- Estimation of the cost of potential damage
- Phase 3: Engage the Public—A public involvements trategy a greed upon by the S teering Committee w as i mplemented by the planning team. All meetings were open to the public. Meetings were held to present the risk a ssessment as well as the draft plan. The public was encourage to participate through a county-specific hazard mitigation survey and the county website that included information on the plan.
- **Phase 4: Assemble the Updated Plan**—The planning team and Steering Committee assembled key information into a document to meet the DMA requirements for all planning partners.
- Phase 5: Adopt/Implement the Plan—Once pre-adoption a pproval has be en granted by the Texas Division of Emergency Management and FEMA Region VI, the final adoption phase will begin. E ach pl anning partner will individually a dopt the updated pl an. The pl an maintenance process includes a schedule for monitoring and e valuating the pl an's pr ogress a nnually and producing a plan revision every 5 years. Throughout the life of this plan, a representative of the original Steering Committee will be available to provide consistent guidance and oversight.

MITIGATION GUIDING PRINCIPLE, GOALS, AND OBJECTIVES

The guiding principle for the Lee County Hazard Mitigation Plan Update is as follows:

• To reduce or eliminate the long-term risks to loss of life and property damage in Lee County and participating cities from the full range of natural disasters.

The following plan goals and objectives were determined by the Steering Committee:

- Goal 1: Protect public health and safety.
 - **Objective 1.1:** Advise the public about health and safety precautions to guard a gainst injury and loss of life from hazards.
 - **Objective 1.2:** Maximize the utilization of the latest technology to provide a dequate warning, communication, and mitigation of hazard events.
 - **Objective 1.3:** Reduce the damage to, and enhance protection of, dangerous areas during hazard events.
 - **Objective 1.4**: Protect critical facilities and services.
- Goal 2: Protect existing and new properties.
 - **Objective 2.1:** Reduce repetitive losses to the National Flood Insurance Program.
 - **Objective 2.2:** Use the most cost-effective approaches to protect existing buildings and public infrastructure from hazards.
 - Objective 2.3: Enact and enforce regulatory measures to ensure that development will not put people in harm's way or increase threats to existing properties.

- Goal 3: Increase public understanding, support, and demand for hazard mitigation.
 - **Objective 3.1:** Heighten public awareness of the full range of natural hazards they face.
 - Objective 3.2: Educate the public on actions they can take to prevent or reduce the loss of life or property from natural hazards.
 - **Objective 3.3:** Publicize and encourage the adoption of a ppropriate hazard mitigation measures.
- **Goal 4:** Build and support local capacity and commitment to continuously become less vulnerable to hazards.
 - **Objective 4.1:** Build and support l ocal pa rtnerships to c ontinuously be come l ess vulnerable to hazards.
 - **Objective 4.2:** Build a cadre of committed volunteers to safeguard the community before, during, and after a disaster.
 - **Objective 4.3**: Build hazard mitigation concerns into planning and budgeting processes.
- Goal 5: Promote growth in a sustainable manner.
 - **Objective 5.1:** Incorporate ha zard m itigation i nto t he long-range pl anning a nd development activities.
 - **Objective 5.2:** Promote beneficial uses of hazardous areas while expanding open space and recreational opportunities.
 - **Objective 5.3:** Utilize regulatory approaches to prevent creation of future hazards to life and property.
- Goal 6: Maximize the resources for investment in hazard mitigation.
 - **Objective 6.1:** Maximize the use of outside sources of funding.
 - **Objective 6.2:** Maximize participation of property owners in protecting their properties.
 - **Objective 6.3:** Maximize insurance coverage to provide financial protection against hazard events.
 - **Objective 6.4:** Prioritize mitigation projects, based on cost-effectiveness and starting with those sites facing the greatest threat to life, health and property.

IDENTIFIED HAZARDS OF CONCERN

For this plan, the Steering Committee considered the full range of natural hazards that could impact the planning area and then listed hazards that present the greatest concern to the county and participating cities. The process incorporated review of state and local hazard planning documents, as well as information on the frequency, magnitude, and co sts a ssociated with h azards that h ave i mpacted o r co uld i mpact the planning area. A necdotal information regarding natural hazards and t he perceived vu lnerability of t he planning area's assets to hazards was also included. Based on the review, this plan addresses the following natural hazards of concern:

- Dam/Levee Failure
- Drought
- Expansive Soils
- Extreme Heat
- Earthquake

- Flood
- Hail
- Hurricane and Tropical Storm
- Lightning
- Tornado

• Wildfire

• Winter Weather

• Wind

MITIGATION ACTIONS

Mitigation actions p resented in t his plan update a re act ivities d esigned t o r educe o r eliminate losses resulting from natural hazards. The update process resulted in the identification of 25 mitigation actions targeted for implementation by i ndividual pl anning pa rtners as lis ted in Table E S-1. The S teering Committee ranked the mitigation actions in order of priority, with 1 being the highest priority. The highest priority mitigation actions are shown in red on the table, medium priority actions are shown in yellow and low priority actions are shown in green.

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS												
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit			
LEE COUNTY													
1	Purchase NOAA All Hazard Radios	Purchase NOAA All Hazard Radios and disperse for residents.	11	SIP	G1	Emergency Management	< \$10,000	Operating Budget, Contingency Fund,	48	Medium			
2	Use Fire Resistant Construction Techniques	Use fire resistant and non-combustible materials in remodels, upgrades, and new construction to mitigate wildfires engulfing homes and buildings.	8	NSP	G1, G3, G4, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	36	Low			
3	Improve Household Disaster Preparedness	Encouraging property owners to purchase hazard insurance not as an alternative to mitigation, but rather to add financial protection if damage does occur. Encouraging residents to prepare by stocking up the necessary items and planning for how family members should respond during a disaster. Publicized information about household preparedness can be found at www.ready.gov. Providing hazard vulnerability checklists for homeowners to conduct their own inspections.	7	NSP	G3, G4	Emergency Management	\$10,000 to \$100,000	City Funds, Grants	24	Low			

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS													
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit				
4	Integrate Mitigation into Local Planning	Incorporating risk assessment and hazard mitigation principles into comprehensive planning efforts. Incorporating hazard mitigation into broader growth management (i.e., Smart Growth) initiatives. Incorporating a hazard risk assessment into the local development and subdivision review process.	2	LPR NSP	G2, G4, G5, G6	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	12	High				
5	Improve Flood Risk Assessment	Incorporating the procedures for tracking high-water marks following a flood into emergency response plans. Using GIS to map areas that are at risk from flooding. Developing and maintaining a database to track community exposure to flood risk.	5	LPR	G1, G2, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	36	Medium				
6	Hazard Education for Homeowners	Develop and implement a multi-hazard public awareness program. Educate homeowners on how to mitigate their homes from these hazards on county website and public forums.	1	EAP	G1, G2, G3, G4, G6	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	24	High				
7	Monitor Drought Conditions	Identify drought indicators, such as precipitation, temperature, surface water levels, soil moisture, etc. Establish a regular schedule to monitor and report conditions on at least a monthly basis.	10	LPR	G1, G4, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	60	Low				

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS													
Action No.	Title	itle Description Responsible Responsible Ranking Mitigation Action Applicable Responsible Ranking						Potential Funding Sources	Timeline in months	Benefit				
8	Assist Vulnerable Population During Extreme Temperatures	Organize outreach to vulnerable populations, including establishing and promoting accessible heating or cooling centers in the community. Create a database to track those individuals at high risk of death, such as the elderly, homeless, and others.	9	LPR EAP	G1, G3, G4	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	48	Low				
9	Incorporating Flood Mitigation in Local Planning	Develope a new floodplain management plan. Adopting a post-disaster recovery ordinance.	3	LPR NSP	G1, G2, G4, G5, G6	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	36	Medium				
10	Drainage System and Flood Control Structures	Prevent scour to culverts and support bracing underneath low-lying bridges by cleaning debris and inspecting culverts and bridges.	4	LPR SIP NSP	G1, G2	Road and Bridge	>\$100,000	Operating Budget, Contingency Fund, Grant Funding	36	Medium				
11	Assess Vulnerability to Severe Wind	Develop a database to track community vulnerability to severe wind. Create a severe wind scenario to estimate potential loss of life and injuries, the types of potential damage, and existing vulnerabilities within the community to develop severe wind mitigation priorities.	6	NSP	G1, G4, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	48	Medium				

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS												
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit			
12	Use the application of calcium soil stabilizers in road construction	Specify the use of calcium soil stabilizers as part of the County Engineer protocol for pavement subgrade work on county roads. This will make a durable permanent roadway layer and minimize damage from expansive soil issues.	12	SIP	G1	Road and Bridge	< \$10,000	General Budget	24	Medium			
CITY O	CITY OF GIDDINGS												
1	Update Building Codes	The City currently has the 2009 IBC and will update to the 2012 IBC. Stricter building codes goes to mitigate identified hazards, such as tornado, high wind, and impact resistant materials (windows, doors, roof bracings); dry-proofing public buildings for flooding and dam failure; upgrading to higher standard insulation for extreme heat and winter storms; installing lighting rods and grounding systems on public buildings; retrofitting to low-flow plumbing and replacing landscaping with drought and fire resistant plants; stricter codes for hail and fire resistant roofing and siding; implementing higher standards for foundations, and upgrading requirements for construction beams, brackets and foundations to mitigation impacts of earthquake and expansive soils.	6	LPR	G1, G3, G4, G5	Building Inspections	< \$10,000	City funds	12	High			

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS													
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit				
2	Purchase NOAA All Hazard Radios	Purchase NOAA All Hazard Radios and disperse for residents.	1	LPR EAP	G1, G3, G4	Emergency Management	< \$10,000	City Funds	12	Medium				
3	Water Conservation Measures	The city will research the options of drilling new water wells and/or implementing water restrictions to maintain public water in the city.	2	LPR SIP EAP	G1, G2, G3, G4, G5, G6	Public Works	>\$100,000	Annual Budget and Bonds	24	Medium				
4	Upgrade Underground Water Lines	Upgrade underground water lines.	3	LPR SIP EAP	G1, G2, G3, G4, G5	Public Works	>\$100,000	Annual Budget and Bonds	48	Medium				
5	Outdoor Warning Siren	Activate outdoor warning sirens for thunderstorms, hail, high winds, and flooding in addition to tornado warnings.	4	LPR EAP	G1, G3	Police Dept.	< \$10,000	Annual Budget	36	High				
6	Hazard Education for Homeowners	Educate homeowners on how to mitigate their homes from these hazards. Post educational information on city's website and as stuffers with utility bills.	5	LPR	G1, G3	Emergency Management	\$10,000 to \$100,000	City Funds	36	High				

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS													
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit				
CITY O	F LEXINGTON													
1	Monitor Drought Conditions	Identify drought indicators, such as precipitation, temperature, surface water levels, soil, moisture, etc. Establish a regular schedule to monitor and report conditions on at least a monthly basis.	6	LPR	G1, G3, G4, G5	Emergency Management	< \$10,000	City Funds, Grants	48	Low				
2	Incorporating Flood Mitigation in Local Planning	Developing a floodplain management plan and updating it regularly. Adopting a post- disaster recovery ordinance.	4	LPR NSP	G1, G2, G4, G5, G6	Floodplain Management	< \$10,000	City Funds	24	Medium				
3	Drainage Systems and Flood Control Structures	Prevent scour to culverts and support bracing underneath low-lying bridges by cleaning debris and inspecting culverts and bridges.	2	LPR SIP NSP	G1, G2	Public Works	>\$100,000	City Funds, Donations	24	Medium				
4	Assess Vulnerability to Severe Wind	Develop a database to track community vulnerability to severe wind. Creating severe wind scenario to estimate potential loss of life and injuries, the types of potential damage, and existing vulnerabilities within the community to develop severe wind mitigation priorities.	5	NSP	G1, G4, G5	Emergency Management	< \$10,000	Grants	48	Medium				
5	Purchase NOAA All Hazard Radios	Purchase NOAA All Hazard Radios and disperse for residents.	3	SIP	G1	Emergency Management	< \$10,000	City Funds	24	Medium				

EXECUTIVE SUMMARY

	TABLE ES-1. RECOMMENDED MITIGATION ACTIONS												
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit			
6	Hazard Education and Risk Awareness to Homeowners	Educate homeowners on how to mitigation their homes from these hazards. Post educational information on city's website and as stuffers with utility bills.	1	EAP	G1, G2, G3, G4, G6	Emergency Management	< \$10,000	City Funds, Grants	12	High			
7	Update Building Codes	The City currently has the 2012 IBC and will update to the 2015 IBC. Stricter building codes goes to mitigate identified hazards, such as tornado, high wind, and impact resistant materials (windows, doors, roof bracings); dry-proofing public buildings for flooding and dam failure; upgrading to higher standard insulation for extreme heat and winter storms; installing lighting rods and grounding systems on public buildings; retrofitting to low-flow plumbing and replacing landscaping with drought and fire resistant plants; stricter codes for hail and fire resistant roofing and siding; implementing higher standards for foundations, and upgrading requirements for construction beams, brackets and foundations to mitigation impacts of earthquake and expansive soils.	7	LPR	G1, G3, G4, G5	Building Inspections	< \$10,000	City funds	12	High			
Notes: CAPCOO EAP GIS	G Capital Area Council of Governments Education and Awareness Programs Geographic Information System		LPR NOAA NSP	Nat Nat	tural Systems P	and Atmospheric rotection		ı					
IBC	Internationa	al Building Codes	SIP	Str	ucture and Infra	astructure Projec	t						

Lee County Hazard Mitigation Plan Update

PART 1 PLAN ELEMENTS AND PARTICIPATING COMMUNITIES

CHAPTER 1. INTRODUCTION

1.1 WHY PREPARE THIS PLAN?

1.1.1 The Big Picture

Hazard mitigation is defined as a way to alleviate the loss of life, personal injury, and property damage that can result from a disaster through long- and short-term strategies. Hazard mitigation involves strategies such as planning, policy changes, programs, projects, and other activities that can mitigate the impacts of hazards. The r esponsibility f or hazard m itigation lies with m any, i ncluding private p roperty ow ners; business and industry; and local, state, and federal government.

The f ederal D isaster Mitigation A ct of 2 000 (DMA) (Public L aw 106 -390) required s tate and local governments to develop hazard mitigation plans as a condition for federal disaster grant assistance. Prior to 2000, federal disaster funding focused on disaster relief and recovery, with limited funding for hazard mitigation planning. The DMA increased the emphasis on planning for disasters before they occur.

The DMA encourages state and local authorities to work together on p re-disaster planning. It promotes "sustainable hazard m itigation," which includes the sound m anagement of n atural resources and the recognition that hazards and mitigation must be understood in the largest possible social and economic context. The planning network called for by the DMA helps local governments articulate accurate needs for mitigation, resulting in faster allocation of funding and more cost-effective risk reduction projects.

1.1.2 Local Concerns

This hazard mitigation plan considers local concerns when evaluating natural hazards and developing mitigation actions. Several factors specific to Lee County and the participating cities initiated this planning effort:

- Lee County and participating cities are exposed to hazards that have caused past damage.
- Limited local resources make it difficult to be pre-emptive in reducing risk. Eligibility for federal financial assistance is paramount to promote successful hazard mitigation in the area.
- Lee County and its partners participating in this plan want to be proactive in preparing for the probable impacts from natural hazards.
- Lee County and its communities participated in previous hazard mitigation plans as part of the Texas Colorado River Floodplain Coalition (TCRFC), which included 15 counties (including Lee) and 63 jurisdictions. This Plan was developed specifically for Lee County and its participating communities: the Cities of Giddings and Lexington.

1.1.3 Purposes for Planning

This hazard mitigation plan update identifies resources, information, and strategies for reducing risk from natural hazards. Elements and strategies in the plan were selected because they meet a program requirement and because they best meet the needs of the planning partners and their citizens. One of the benefits of multi-jurisdictional planning is the ability to pool resources and eliminate redundant activities within a planning area that has uniform risk exposure and vulnerabilities. FEMA encourages multi-jurisdictional planning under its guidance for the DMA. This plan will help guide and coordinate mitigation activities throughout the planning area.

This plan update was developed to meet the following objectives:

• Meet or exceed requirements of the DMA.

- Enable all planning partners to continue using federal grant funding to reduce risk through mitigation.
- Meet the needs of each planning partner as well as state and federal requirements.
- Create a risk assessment that focuses on Lee County's and the participating cities' hazards of concern.
- Create a single planning doc ument that integrates all planning partners into a framework that supports partnerships within the county, and puts all partners on the same planning cycle for future updates.
- Coordinate existing plans and programs so that high-priority actions and projects to mitigate possible disaster impacts are funded and implemented.

1.2 WHO WILL BENEFIT FROM THIS PLAN?

All citizens and businesses of Lee County and the participating cities are the ultimate beneficiaries of this hazard mitigation plan update. The plan reduces risk for those who live in, work in, and visit the county and the participating cities. It provides a viable planning framework for all foreseeable natural hazards that may impact the county and the participating cities. Participation in development of the plan by key stakeholders helped ensure that ou tcomes will be mutually be neficial. The resources and background information in the plan are a pplicable c ountywide. The plan's g oals and recommendations c an lay groundwork for the development and implementation of local mitigation activities and partnerships.

1.3 ELEMENTS OF THIS PLAN

This plan includes all federally required elements of a disaster mitigation plan:

- Countywide elements:
 - A description of the planning process
 - The public involvement strategy
 - A list of goals and objectives
 - A countywide hazard risk assessment
 - Countywide mitigation actions
 - A plan maintenance strategy
- Jurisdiction-specific elements for each participating jurisdiction:
 - A description of the participation requirements established by the Steering Committee
 - Jurisdiction-specific mitigation actions

The following appendices include information or explanations to support the main content of the plan:

- Appendix A: A glossary of acronyms and definitions.
- Appendix B: The FEMA Local Mitigation Plan Review Tool.
- Appendix C: Public outreach information, including the hazard mitigation survey and summary, and documentation of public meetings.
- Appendix D: Plan adoption resolutions from planning partners.
- Appendix E: A template for progress reports to be completed as this plan is implemented.

All planning partners will adopt this Lee County Hazard Mitigation Plan Update in its entirety.

CHAPTER 2. PLAN UPDATE—WHAT HAS CHANGED

2.1 THE PREVIOUS PLAN

Lee County and its communities participated in previous hazard mitigation plans as part of the TCRFC. The TCRFC is a non-profit, 501(c)(3) organization formed in June 2001 by the cities and counties of the Lower Colorado River A uthority (LCRA) in response to flood devastation requiring more coordinated damage pr evention e fforts. In 2004, t he TCRFC developed a Hazard Mitigation A ction P lan e ntitled *Creating a Disaster Resistant Lower Colorado River Basin*, which was approved by FEMA in 2004. In 2011, TCRFC completed the *Multi-Jurisdictional Hazard Mitigation Plan Update 2011-2016* as a regional partnership of 15 counties (including Lee) and 63 jurisdictions. The 2011-2016 update was completed with technical support from the LCRA and the outside consultant team of H20 Partners, Inc., and PBS&J. The 2011-2016 plan update included the Cities of Giddings and Lexington.

The 2011-2016 update ranked 13 hazards from high (H) to very low (VL), or not applicable (N/A) for Lee County and the participating Cities of Giddings and Lexington. Table 2-1 lists the hazards and their ranking. These 13 hazards were evaluated in the TCRFC plan. These hazards included 3 human-caused hazards: hazardous m aterials (HAZMAT), p ipeline failure, and t errorism. A lthough the pr evious p lan p rofiled human-caused hazards, only natural hazards are evaluated in this plan update. Drought, extreme heat, and thunderstorms were the natural hazards ranked high for Lee County and the participating cities. In addition, thunderstorms w ere not p rofiled s eparately i n t his plan upd ate; r ather t he h azards a ssociated w ith thunderstorms (hail, wind, lightning, and flooding) were profiled separately.

TABLE 2-1. HAZARDS EVALUATED IN THE 2011-2016 TCRFC MULTI-JURISDICTIONAL HAZARD MITIGATION PLAN UPDATE													
Jurisdiction	Dam Failure	Drought	Extreme Heat	Flood	Hail	HAZMAT	Hurricane / Tropical Storm	Pipeline Failure	Terrorism	Thunderstorm	Tornado	Wildfire	Winter Storm
Lee County	VL	Н	H	Μ	VL	L	VL	L	VL	Н	L	Μ	Μ
City of Giddings	N/A	М	М	L	М	М	N/A	М	М	М	М	М	L
City of Lexington	N/A	Η	L	VL	L	L	М	L	L	М	L	М	VL

The *TCRFC Multi-Jurisdictional Hazard Mitigation Plan Update 2011-2016* identified goals, objectives, and mitigation actions for these hazards. The overall goal of the 2011-2016 TCRFC plan was:

• To reduce or eliminate the long-term risks to loss of life and property da mage in the Lower Colorado River Basin from the full range of disasters.

Six goals were identified for mitigating the hazards, with one or more objectives defined for each goal. These goals and their associated objectives are as follows:

- Goal 1: Protect public health and safety.
 - **Objective 1.1:** Advise the public about health and safety precautions to guard a gainst injury and loss of life from hazards.
 - **Objective 1.2:** Maximize the utilization of the latest technology to provide a dequate warning, communication, and mitigation of hazard events.

- **Objective 1.3:** Reduce the damage to, and enhance protection of, dangerous areas during hazard events.
- **Objective 1.4:** Protect critical facilities and services.
- Goal 2: Protect existing and new properties.
 - **Objective 2.1:** Reduce repetitive losses to the National Flood Insurance Program.
 - **Objective 2.2:** Use the most cost-effective approaches to protect existing buildings and public infrastructure from hazards.
 - **Objective 2.3:** Enact and enforce regulatory measures to ensure that development will not put people in harm's way or increase threats to existing properties.
- Goal 3: Increase public understanding, support and demand for hazard mitigation.
 - **Objective 3.1:** Heighten public a wareness of the full range of natural and man-made hazards they face.
 - **Objective 3.2:** Educate the public on actions they can take to prevent or reduce the loss of life or property from all hazards.
 - **Objective 3.3:** Publicize and encourage the adoption of a ppropriate h azard mitigation measures.
- **Goal 4:** Build and support local capacity and commitment to continuously become less vulnerable to hazards.
 - **Objective 4.1:** Build a nd s upport l ocal pa rtnerships to c ontinuously be come less vulnerable to hazards.
 - **Objective 4.2:** Build a cadre of committed volunteers to safeguard the community before, during, and after a disaster.
 - **Objective 4.3:** Build hazard mitigation concerns into planning and budgeting processes.
- Goal 5: Promote growth in a sustainable manner.
 - **Objective 5.1:** Incorporate ha zard m itigation i nto t he long-range pl anning a nd development activities.
 - **Objective 5.2:** Promote beneficial uses of hazardous areas while expanding open space and recreational opportunities.
 - **Objective 5.3:** Utilize regulatory approaches to prevent creation of future hazards to life and property.
- **Goal 6:** Maximize the resources for investment in hazard mitigation.
 - **Objective 6.1:** Maximize the use of outside sources of funding.
 - **Objective 6.2:** Maximize participation of property owners in protecting their properties.
 - **Objective 6.3:** Maximize insurance coverage to provide financial protection against hazard events.
 - **Objective 6.4:** Prioritize mitigation projects, based on cost-effectiveness and starting with those sites facing the greatest threat to life, health and property.

The *TCRFC Multi-Jurisdictional Hazard Mitigation Plan Update 2011-2016* then identified one or more mitigation actions to accomplish each objective. The current status of each of these actions identified in the plan is shown in Table 2-2. Actions designated as "(Past)" were carried forward from the 2004 TCRFC Plan.

	TAE LEE COUNTY PROJECT IM (UPDATE OF 2011-2016		IENT		-	-	-	ET		
		Р	roject	Statu	IS		Fun	ding		
Action No.	Action	Ongoing	Delayed	Completed	Deleted	Budgeted	Apply for Grant	Grant Received	Farget Completion	Comments
LEE COUN	-						<u> </u>			
1	Develop a water/power/supplies crisis response plan.			X					Х	
2	Educate the public on extreme heat/drought safety and health issues.			X					X	
3	Identify sites where stream and rain gages need to be added or upgraded and coordinate installation requests with USGS and River Authority.				Х					
4	Implement or expand rainfall observer program, utilizing volunteers and encourage participation in National Weather Service CoCoRaHS program.			Х						
5	Track and record high-water marks following a flood.	Х				Х				Incorporated into Mitigation Action 5.
6	Arrange HAZMAT training for local emergency responders from major transportation companies (like railroads).			X					Х	
7	Develop and maintain a basic emergency management plan that complies with state planning standards. Use LEPCs and annual community report from TRC/DEM.			Х					Х	
8	Educate the public about hazardous materials and household hazardous waste.			X					Х	

	TAB LEE COUNTY PROJECT IM (UPDATE OF 2011-2016		MENT		-	-	-	ET		
		P	Project	t Statu	IS		Fun	ding		
		Ongoing	Delayed	Completed	Deleted	Budgeted	Apply for Grant	Grant Received	Target Completion	
Action No.	Action						7		Τ	Comments
9	Educate the public about HAZMAT: safety risks, detecting an accident, responding to an accident, evacuation, and shelter-in-place training.			X					Х	
10	Improve local warning system.			X					Х	
11	Enhance communications within Lee County among our first responders.			Х					Х	
12	Develop a disaster recovery plan.	Х				Х				Incorporated into Mitigation Action 4.
13	Develop evacuation plans, policies, and procedures for the full range of emergencies and disasters in the community.			Х					Х	
14	Implement and promote a multi-hazard awareness program consisting of but not limited to a speaker's bureau for disaster related topics that focus on mitigation, preparedness, and response, and a mitigation library or hazard information center for use by local residents and schools.	X				х				Incorporated into Mitigation Action 6.
15	Promote safety campaigns to educate the public on what to do in the event of a tornado.			Х					Х	
16	Conduct public education program on fire risks and wildland fire mitigation, with the assistance of the Texas Forest Service.			Х					Х	
17	Create a wildfire recovery plan, including soil erosion control, and vegetative recovery.	Х				Х				Incorporated into Mitigation Action 4.

	TAB LEE COUNTY PROJECT IM (UPDATE OF 2011-2016		IEN		-	-	-	ET		
		Р	roject	t Statu	ıs		Fun	ding		
Action No.	Action	Ongoing	Delayed	Completed	Deleted	Budgeted	Apply for Grant	Grant Received	Target Completion	Comments
CITY OF O			<u> </u>					<u> </u>		
1	Develop and maintain a basic emergency management plan that complies with state planning standards.			X						
2	Arrange for severe weather awareness training for local emergency responders, including roadway and railway release incidents.			Х						
3	Implement an early warning system and resource plan for hazardous material release.			Х						
4	Develop and enforce a plan for implementing mandatory water rationing.			X						
5	Impose excess-use charges during times of water restriction/rationing.			X						
6	Adopt an emergency water allocation strategy to be implemented during the summer months.			X						

	TAE LEE COUNTY PROJECT IM (UPDATE OF 2011-2016		IEN		-	-	-	ET		
		Р	roject	t Statu	IS		Fun	ding		
		Ongoing	Delayed	Completed	Deleted	Budgeted	Apply for Grant	Grant Received	Target Completion	
Action No.	Action						7		T;	Comments
CITY OF I	LEXINGTON	1				r	[1		
1	 Develop a Fire Mitigation Plan with the goal of: Emphasizing prevention of city property interface fires using a proactive, cooperative approach. Ensuring land development ordinances and building codes support mitigation efforts. Promoting effective fuel reduction programs in the city and surrounding areas. Promoting the development of water resources for firefighting within the city. Establishing at least one full-time position. 			х					x	
2	Facilitate a city- and county-wide mutual aid agreement for response to hazards and examine the current agreements with the county to assess the need to expand or update, including coordinating with local, state, and federal agencies.			Х					х	
3	Produce and distribute functional maps of the city and surrounding area for response to fire threats, and work with the EMC to produce maps for emergency management.			X					X	
4	Improve the technical capability and provide training classes for the Lexington Police, Fire Department and Public Works to ensure that personnel will work closely together in the event of a natural or man-made disaster. Offer more FEMA in-service training on table top discussions, and encourage rural districts to become familiar with the City of Lexington.	х				х				Incorporated into Mitigation Actions 2, 4, and 6.

	TAB LEE COUNTY PROJECT IM (UPDATE OF 2011-2016		MEN		-	-	-	ET		
		P	rojec	t Statu	IS		Fun	ding		
Action No.	Action	Ongoing	Delayed	Completed	Deleted	Budgeted	Apply for Grant	Grant Received	Target Completion	Comments
5	Institute a working group to include local officials and the county to develop and adopt a first response group to fires and evaluate water supply issues in terms of both fixed and mobile supplies.			X					X	
6	Enforce the current state building codes and enhance the local code to increase wind resistance for structures.			X					Х	
7	Increase public awareness of natural and man-made hazards through brochures, print, media and school events. Encourage individual responsibility and provide examples of actions citizens can undertake to make their homes and lives more disaster resistant.			X					X	
· /	e action number column indicates that the action was first identified in the 20 ation Plan Update.	004 TC	CRFC I	łazara	l Mitig	ation 1	Plan a	nd was	s carrie	ed forward into the 2011-2016 TCRFC
CoCoRaHS	Community Collaborative Rain, Hail and Snow Network		HAZI	ЛАТ	Haz	zardou	s mate	rials		
EMC	Emergency Management Coordinator		LEPC		Loc	cal Em	ergenc	y Plan	ning (Committees
FEMA	Federal Emergency Management Agency		USGS	5	U.S	5. Geol	ogical	Surve	y	

2.2 WHY UPDATE?

Title 44 of the Code of Federal Regulations (44 CFR) stipulates that hazard mitigation plans must present a schedule for monitoring, evaluating, and updating the plan. As mentioned previously, Lee County and the participating cities participated in a mitigation planning process in 2011 as part of the TCRFC. This plan included 15 c ounties and will expire in 2016. Regional plans are no longer acceptable by FEMA. This update process provides an opportunity to reevaluate recommendations, monitor the impacts of actions that have been accomplished, and evaluate whether there is a need to change the focus of mitigation strategies. A jurisdiction covered by a plan that has expired is not able to pursue elements of federal funding under the Robert T. Stafford Act for which a current hazard mitigation plan is a prerequisite.

2.3 THE PLAN—WHAT IS DIFFERENT?

The previous regional TCRFC pl an has be en improved to focus on Lee County and its participating communities using the best and most current data and technology available. All participating municipalities were fully involved in the preparation of this plan update. The updated plan includes a more robust hazard analysis. Mi tigation a ctions w ere r eviewed a nd a mended t o i nclude on ly t hose t hat w ould m ove t he community towards a higher degree of resiliency while being feasible, practical, and implementable given current finances. F ederal and st ate f unds f or p rojects h ave b ecome d ifficult t o obtain. T he upd ate recommends 25 mitigation actions:

- 12 countywide actions
- 6 actions specifically for the City of Giddings
- 7 actions specifically for the City of Lexington

Actions from the previous plan were carried forward into the mitigation actions if they were identified as delayed or in progress. These actions are indicated on Table 2-2.

2.4 LOCAL MITIGATION PLAN REVIEW TOOL

The Local Mitigation Plan Review Tool demonstrates how the Local Mitigation Plan meets the regulation in 44 CFR §201.6 and offers states and FEMA Mitigation Planners an opportunity to provide feedback to the community.

- The <u>Regulation Checklist</u> provides a summary of FEMA's evaluation of whether the plan has addressed all requirements.
- The <u>Plan A ssessment</u> identifies the plan's s trengths as well a s d ocuments a reas f or future improvement.
- The <u>Multi-Jurisdiction Summary Sheet</u> is an optional worksheet that can be used to document how each jurisdiction met the requirements of each element of the plan (Planning Process; Hazard Identification and R isk A ssessment; M itigation Strategy; P lan R eview, Evaluation, and Implementation; and Plan Adoption).

The FEMA Mitigation Planner must reference the *Local Mitigation Plan Review Guide* when completing the Local Mitigation Plan Review Tool. The Local Mitigation Plan Review Tool is included in this hazard mitigation plan as Appendix B.

CHAPTER 3. PLAN METHODOLOGY

3.1 GRANT FUNDING

The current TCRFC Hazard Mitigation Plan will expire in 2016. Therefore, TCRFC initiated steps to begin the next update in 2013. The TCRFC Board selected the JSWA Team to assist with development and implementation of the plan update. The JSWA Team consists of JSW & Associates, Tetra Tech, Inc., and Halff Associates. TCRFC worked with the JSWA Team to apply for hazard mitigation funding through FEMA's Pre-Disaster Mitigation Grant Program. The JSWA Team was successful in obtaining grants for Lee County and the participating communities of the Cities of Giddings and Lexington. Each participating member contributed both monetarily and through in-kind contributions.

3.2 ESTABLISHMENT OF THE PLANNING PARTNERSHIP

CO	TABLE 3-1. JNTY AND CITY PLANNING	PARTNERS
Jurisdiction	Point of Contact	Title
Lee County	Delynn Peschke	Emergency Management Coordinator
City of Giddings	Spencer Schneider	Emergency Management Coordinator
City of Lexington	Clarence Yarbrough	Police Chief

Lee County opened this planning effort to all eligible local governments in the county. The planning partners covered under this plan are shown in Table 3-1.

Each jurisdiction wishing to join the planning partnership was asked to commit to the process and have a clear understanding of expectations. These include:

- Each p artner will support and p articipate in the S teering C ommittee meetings overseeing the development of the plan update. Support includes making decisions regarding plan development and scope on behalf of the partnership.
- Each partner will provide support as needed for the public involvement strategy developed by the Steering Committee in the form of mailing lists, possible meeting space, and media outreach such as newsletters, newspapers, or direct-mailed brochures.
- Each partner will participate in plan update development activities such as:
 - Steering Committee meetings
 - Public meetings or open houses
 - Workshops and planning partner training sessions
 - Public review and comment periods prior to adoption

Attendance will be tracked at these activities, and attendance records will document participation for e ach pl anning p artner. All p articipating c ommunities a re expected to a ttend and a ctively participate in all meetings and activities.

• Each p artner w ill b e ex pected t o r eview t he r isk assessm ent an d i dentify h azards an d vulnerabilities specific to its jurisdiction. C ontract resources will provide jurisdiction-specific mapping a nd t echnical consultation to a id in this t ask, but t he d etermination of r isk and vulnerability ranking will be up to each partner.

- Each partner will be expected to review the mitigation recommendations chosen for the overall county and evaluate whether they will meet the needs of its jurisdiction. Projects within each jurisdiction c onsistent w ith the overall p lan r ecommendations w ill need to be i dentified, prioritized, and reviewed to identify their benefits and costs.
- Each partner will be required to sponsor at least one public meeting to present the draft plan at least two weeks prior to adoption.
- Each partner will be required to formally adopt the plan.
- Each partner will agree to the plan implementation and maintenance protocol.

Failure to meet these criteria may result in a partner being dropped from the partnership by the Steering Committee, and thus losing eligibility under the scope of this plan.

3.3 DEFINING THE PLANNING AREA

The planning area was defined to consist of all of Lee County. All partners to this plan have jurisdictional authority within this planning area. Planning partners include the Cities of Giddings and Lexington (Figure 3-1).

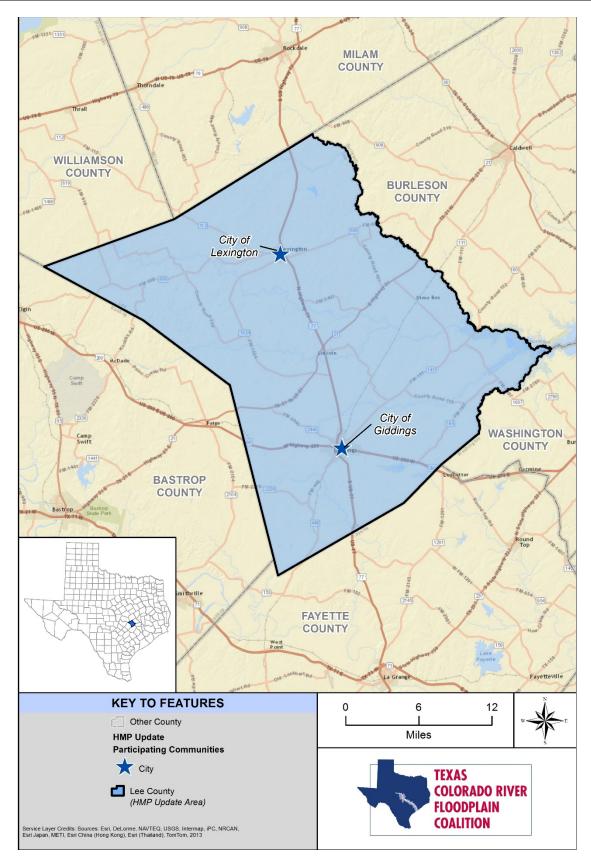


Figure 3-1. Lee County Planning Area and Participating Communities

3.4 THE STEERING COMMITTEE

Hazard mitigation planning enhances collaboration and support among diverse parties whose interests can be affected by hazard losses. A Steering Committee was formed to oversee all phases of the plan update. The members of this committee included key planning partner staff, citizens, and other stakeholders from the planning area. Table 3-2 lists the committee members.

	TABLE 3-2. STEERING COMMITTEE MEMBERS	
Name	Title	Jurisdiction
Delynn Peschke	Emergency Management Coordinator	Lee County
Spencer Schneider	Emergency Management Coordinator	City of Giddings
Charlotte Hooper	Mayor	City of Lexington
Johnny Wooldridge	Captain, Police Department	City of Lexington
Clarence Yarbrough	Emergency Management Coordinator/ Police Chief	City of Lexington

The Steering Committee agreed to meet a minimum of three times or as needed throughout the course of the plan's development. The JSWA Team and the TCRFC Executive Director facilitated each Steering Committee meeting, which addressed a set of objectives based on the work plan established for the plan update. The Steering Committee met three times from March 2015 through September 2015. Meeting agendas, notes, and attendance logs can be found in Appendix C of this document.

The planning t eam made a p resentation at a Steering Committee meeting on March 11, 2015 (some participants attended a second kick-off meeting on March 25, 2015 with Bastrop and Fayette Counties), to introduce the mitigation planning process. The Steering Committee, planning partners, and the public were encouraged to participate in the plan update process. Key meeting objectives at the March meeting were as follows:

- Steering Committee purposes and responsibilities
- Plan partners and signators responsibilities
- Purpose and goals of the update process
- Review and amend mitigation goals and objectives
- Review previous mitigation actions from 2011 plan
- Critical facilities discussion
- Next steps (including the capabilities assessment, hazard analysis review, and community participation)

3.5 COORDINATION WITH OTHER AGENCIES

Opportunities for involvement in the planning process must be provided to neighboring communities, local and regional agencies involved in ha zard mitigation, agencies with a uthority to regulate de velopment, businesses, academia, and other private and non-profit interests (44 CFR, Section 201.6(b)(2)). This task was accomplished by the planning team as follows:

• Steering Committee Involvement—Agency representatives were invited to participate on the Steering Committee. Mr. D elynn P eschke, Lee C ounty E mergency Ma nagement

Coordinator, was the primary lead / point of contact for stakeholder and community outreach. Lee County t ook a p roactive approach in inviting a nd seating t he S teering C ommittee for t he development of this ha zard mitigation pl an. T he C ounty invited and r equested t he a ctive participation of a variety of stakeholder interests to form the Lee County HMP Steering Committee. The Steering Committee Members that were invited by the County and participated as stakeholders in the Lee County mitigation plan are listed on Table 3-2.

The County utilized personal communication including telephone and email outreach, attendance at v arious pub lic m eetings a nd f orums a s w ell a s t he C ounty w ebsite to inform a nd i nvite participation of the Steering Committee. The Steering Committee Members were encouraged to attend and actively participate in meetings as well as to review the draft plan and provide questions and comments. Public notices were posted in and around the County offices and the community notifying them of the planning process, upcoming meeting dates and inviting community participation.

In addition, TCRFC also undertook stakeholder/community outreach activities in support of Lee County. A n informational email was sent in the early weeks of the planning process advising various stakeholders and special interest groups about the planning process and inviting interested members to attend the committee meetings. TCRFC drafted and sent newsletters to various interest groups an d also m ade t he n ewsletters available t o t he C ounty f or t heir o utreach efforts. Informational items and project updates were also posted on the TCRFC Web Site.

The County coordinated the response to all questions and comments. Any changes to the plan as part of this stakeholder outreach were coordinated thru the County.

The L ee C ounty meetings were held in t andem with ne ighboring c ounties and c ommunities. Announcements were made in all meetings regarding the outreach and meeting schedules in the other communities. Attendance and participation was encouraged.

- Agency Notification—The Texas Division of Emergency Management (TDEM) was invited to participate in the plan development process from the beginning and was kept apprised of plan development milestones. TDEM received meeting announcements, meeting agendas, and meeting minutes by e-mail t hroughout the plan development process. TDEM supported the effort by attending meetings or providing feedback on issues.
- **Pre-Adoption Review**—Agency r epresentatives on the S teering C ommittee and TDEM were provided an opportunity to review and comment on this plan, primarily through the hazard mitigation plan website (see Section 3.7). Each agency was sent an e-mail message informing them that draft portions of the plan were available for review. In addition, the complete draft plan was sent to TDEM for a pre-adoption review to ensure program compliance.

This upda te p rocess was i nitiated by T CRFC, a regional partnership of c ities and c ounties in the Colorado R iver basin and the surrounding a reas. The process was initiated by and was under the direction of Mr. M ickey Reynolds, E xecutive D irector of TCRFC. A lthough s eparate pl ans were prepared for each county, 15 counties and 46 cities and towns in TCRFC updated their hazard mitigation plans simultaneously. Steering Committee meetings were held with adjacent counties so neighboring communities were aware of the planning process and could share ideas and information throughout the region. Steering Committee meetings for Lee County were held along with Williamson, Bastrop, and Fayette Counties and the Cities of Cedar Park, Florence, and Hutto in Williamson County, the Cities of Bastrop, Elgin, and Smithville in Bastrop County, and the Cities of Carmine, Flatonia, and La Grange in F ayette C ounty. The full list of a ttendees from other ne ighboring c ommunities at e ach S teering Committee meeting is included in Appendix C. In addition, the planning team presented the plan update process at the TCRFC annual meeting on July 31, 2015.

3.6 REVIEW OF EXISTING PROGRAMS

Hazard mitigation planning must include review and incorporation, if appropriate, of existing plans, studies, reports and technical information (44 CFR, Section 201.6(b)(3)). Chapter 6 of this plan provides a review of laws and ordinances in effect within the planning area that can affect hazard mitigation actions. In addition, the following programs can affect mitigation within the planning area:

- Lee County
 - Subdivision and Development Regulations
 - Flood Damage Prevention Order
 - Floodplain Map
 - Basic Emergency Operations Plan
- City of Giddings
 - Master Plan
 - Code of Ordinances
 - Planning and Zoning Commission
 - Land Use Management Ordinance
 - Economic Development Council
- City of Lexington
 - Master Plan
 - Code of Ordinances

An assessment of all planning partners' regulatory, technical, and financial capabilities to implement hazard mitigation actions is presented in Chapter 7. Many of these relevant plans, studies, and regulations are cited in the capability assessment.

The r eview of ex isting p rograms and t he a ssessment of c apabilities identify t he plans, r egulations, personnel, and funding mechanisms available to the county and planning partners to impact and mitigate the effects of natural hazards. The review also helps identify opportunities for the planning partners to strengthen and expand their abilities to proactively mitigate natural hazards in the community through the expansion of existing departments and programs; completion of applicable plans; adoption of necessary regulations or ordinances; creation and hiring of new departments and staff; or mutual aid agreements and memorandums of unde rstanding w ith n eighboring c ommunities. The planning partners r eviewed t he findings of the capabilities as sessment during the second Steering C ommittee meeting and u sed this information to identify mitigation actions.

3.7 PUBLIC INVOLVEMENT

Broad public participation in the planning process helps ensure that diverse points of view about the planning area's needs are considered and addressed. The public must have opportunities to comment on disaster m itigation plans dur ing t he dr afting s tages a nd pr ior t o p lan a pproval (44 CFR, Section 201.6(b)(1)). The strategy for involving the public in this plan emphasized the following elements:

- Include members of the public on the Steering Committee
- Use a community survey/questionnaire to evaluate whether the public's perception of risk and support of hazard mitigation has changed since the initial planning process

- Attempt to reach as many planning area citizens as possible using multiple media
- Identify and involve planning area stakeholders
- Solicit public feedback at each stage of plan implementation, monitoring, and evaluation.

3.7.1 Stakeholders and the Steering Committee

Stakeholders a ret he i ndividuals, ag encies, and jurisdictions t hat h ave a v ested i nterest in t he recommendations of the hazard m itigation p lan, including pl anning pa rtners. T he e ffort to include stakeholders in this process included stakeholder participation on the Steering Committee. Stakeholders were encouraged to attend and participate in all committee meetings.

3.7.2 Survey/Questionnaire

A hazard mitigation plan questionnaire (see Figure 3-2) was developed to gauge household preparedness for natural hazards; the level of knowledge of tools and techniques that assist in reducing risk and loss from natural hazards; and the perceived impact of natural hazards on Lee County and the participating cities' residents and businesses. This on-line questionnaire was designed to help identify areas vulnerable to one or m ore na tural h azards. The a nswers to these 35 questions he lped g uide t he S teering C ommittee in prioritizing hazards of impact and in selecting goals, objectives, and mitigation strategies. A total of 16 questionnaires were completed during the course of this planning process.

	Lee C	ounty Texas
		Texas
Lee County TX HMP U	pdate Survey	
1. Survey Introduction		
	1/5	
Mitigation Plan. The origina and included Lee County a	al Hazard Mitigation Plan was prepared by th ind communities in 16 other counties. This u	nty are working together to create a Lee County Hazard ne Texas Colorado River Floodplain Coalition (TCRFC) pdated plan will focus only on hazards identified within at enable the partnership to use pre- and post-disaster
In order to identify and plar the level of knowledge loca disasters. The information	al citizens already have about disaster issues	s associated with hazards. assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of to reduce the risk of injury or property damage in the
In order to identify and plar the level of knowledge loca	n for future natural disasters, we need your a al citizens already have about disaster issues	assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of
In order to identify and plar the level of knowledge loca disasters. The information future. The survey consists of 35 of	n for future natural disasters, we need your a al citizens already have about disaster issues you provide will help us coordinate activities questions plus an opportunity for any additio	assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of
In order to identify and plar the level of knowledge loca disasters. The information future. The survey consists of 35 of than 5 minutes to complete	n for future natural disasters, we need your a al citizens already have about disaster issues you provide will help us coordinate activities questions plus an opportunity for any additio and is anonymous. When you have finisher	assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of to reduce the risk of injury or property damage in the nal comments at the end. The survey should take less
In order to identify and plar the level of knowledge loca disasters. The information future. The survey consists of 35 of than 5 minutes to complete The Lee County Hazard M	n for future natural disasters, we need your a al citizens already have about disaster issues you provide will help us coordinate activities questions plus an opportunity for any additio e and is anonymous. When you have finisher itigation Steering Committee thanks you for	assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of to reduce the risk of injury or property damage in the nal comments at the end. The survey should take less d the survey, please click "Done" on the final page.
In order to identify and plar the level of knowledge loca disasters. The information future. The survey consists of 35 of than 5 minutes to complete The Lee County Hazard M process.	n for future natural disasters, we need your a al citizens already have about disaster issues you provide will help us coordinate activities questions plus an opportunity for any additio e and is anonymous. When you have finisher itigation Steering Committee thanks you for	assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of to reduce the risk of injury or property damage in the nal comments at the end. The survey should take less d the survey, please click "Done" on the final page.
In order to identify and plar the level of knowledge loca disasters. The information future. The survey consists of 35 of than 5 minutes to complete The Lee County Hazard M process.	n for future natural disasters, we need your a al citizens already have about disaster issues you provide will help us coordinate activities questions plus an opportunity for any additio and is anonymous. When you have finished itigation Steering Committee thanks you for the lo you live?	assistance. This questionnaire is designed to help us gage s and to identify areas vulnerable to various types of to reduce the risk of injury or property damage in the nal comments at the end. The survey should take less d the survey, please click "Done" on the final page. taking the time to participate in this information-gathering

Figure 3-2. Sample Page from Questionnaire Distributed to the Public

3.7.3 Meetings

Three Steering Committee meetings were held during the planning process. The initial Steering Committee meeting was held with participants from Williamson County on M arch 11, 2015, in Cedar Park, Texas. Another kick-off meeting was held on March 25, 2015, for Steering Committee members who could not attend the March 11 meeting. The second and third Steering Committee meetings were held on July 1, 2015, and September 9, 2015. Both second and third Steering Committee meetings were held in Bastrop, Texas and included representatives from B astrop and F ayette C ounties (see Figure 3-3). The meeting format allowed attendees to access handouts, maps, and other resources and ask questions during the meetings. Additionally, p roject s taff a nd c ounty/city personnel remained a fter t he meeting t o have d irect conversations with interested attendees. Details regarding the planning and information generated for the risk assessment were shared with attendees via a PowerPoint presentation.

Lee County and the planning partners held public meetings to present the draft plan, discuss the benefits of the plan, and solicit public comments. Unless otherwise noted below, the public meetings were held as part of a regularly scheduled public meeting and the plan was discussed as an item on the meeting agenda. Notice of the public meeting was provided in compliance with the communities' individual requirements.

A member of the planning team was available during all meetings to answer questions from the public on the development of the hazard mitigation plan.

Lee County and the City of Giddings held a public meeting on January 25, 2016 to present the draft plan and solicit public comments. The draft plan was available for review in hard copy at the Lee County Office of Emergency Management for review by interested parties. In addition, the draft was posted on the Lee County and City of Giddings websites on January 11, 2016. No comments that resulted in changes to the plan w ere received from t he public e lectronically or i n p erson at t he County O ffice of E mergency Management or during the public meeting. The draft plan was presented and reviewed in a public meeting before the Lee County Commissioners Court on XXX XX, 2016.

Figure 3-3. Steering Committee Meeting September 9, 2015

3.7.4 Press Releases/News Articles

Press releases were distributed over the course of the plan's development as key milestones were achieved and prior to each public meeting. TCRFC released an informational brochure to its members.

3.7.5 Internet

At the beginning of the plan development process, the TCRFC posted information regarding the update process, a link t o t he c ommunity s urvey, and a link t o t he m itigation p lan on t he TCRFC website (http://www.tcrfc.org/). The TCRFC website keeps the public informed on plan development milestones and to solicit relevant input. Information on t he plan development process, the Steering Committee, the questionnaire, and phased drafts of the plan were available to the public on the site throughout the process. After the plan's completion, the TCRFC website will keep the public informed about successful mitigation projects and future plan updates.

The draft plan was posted on the Lee County and City of Giddings websites on January 11, 2016 to allow the public to review the plan, as described in Chapter 3.7.3. The City of Lexington has no community website.

3.8 PLAN DEVELOPMENT, CHRONOLOGY, MILESTONES

Table 3-3 summarizes important milestones in the development of the plan update.

Date	Event	Description	Attendance
2013			
9/16	Submit grant application	Seek funding for plan development process	N/A
8/5	Initiate consultant procurement	Seek a planning expert to facilitate the process	N/A
10/1	Select JSWA Team to facilitate plan development	Facilitation contractor secured	N/A
2015			
2/25	Notified grant funding secured	Funding secured	N/A
2/25	Contract signed	Notice to proceed given to Tetra Tech, Inc.	N/A
2/26	Identify Steering Committee	Formation of the Steering Committee	N/A
3/11 or 3/25	Steering Committee/ Stakeholder Meeting #1	Presentation on plan process given, participation, review of goals and objectives	Lee County; Cities of Giddings and Lexington
7/1	Steering Committee Meeting #2	Review community survey, review hazard identification and risk assessment, review and update plan goals and objectives	Lee County; Cities of Giddings and Lexington
9/9	Steering Committee Meeting #3	Mitigation actions presentation and project development	Lee County; City of Lexington
Ongoing	Public Outreach	News articles and website posting	N/A
10/23	Draft Plan	Internal review draft provided to Steering Committee	N/A
2016			
1/11	Public Comment Period	Initial public comment period of draft plan opens. Draft plan posted on County and City of Giddings websites and in hard copy at the Lee County Office of Emergency Management with press release notifying public of plan availability	Lee County, City of Giddings
1/25	Public Outreach	Final public meeting on draft plan	Lee County, City of Giddings
3/17	Public Comment Period	Draft plan made available in hard copy at the Lexington City Hall	
4/13	Public Outreach	Final public meeting on draft plan	City of Lexington
5/19	Plan Review	Final draft plan submitted to Texas Division of Emergency Management for review	N/A
2/24/17	Plan Approval Pending Adoption	Plan approval pending adoption by FEMA	N/A
<mark>X/X</mark>	Adoption	Adoption window of final plan opens	N/A
X/X	Plan Approval	Final plan approved by FEMA	N/A

CHAPTER 4. GUIDING PRINCIPLE, GOALS, AND OBJECTIVES

Hazard mitigation plans must identify goals for reducing long-term vulnerabilities to identified hazards (44 CFR Section 201.6(c)(3)(i)). The Steering Committee established a guiding principle, a set of goals, and measurable objectives for this plan, based on data from the preliminary risk assessment and the results of the public involvement strategy. The guiding principle, goals, objectives, and actions in this plan all support each other. Goals were selected to support the guiding principle. Objectives were selected that met multiple goals. Actions were prioritized based on the action meeting multiple objectives.

4.1 GUIDING PRINCIPLE

A guiding principle focuses the range of objectives and actions to be considered. This is not a goal because it does not describe a hazard mitigation outcome, and it is broader than a hazard-specific objective. The guiding principle for the Lee County Hazard Mitigation Plan Update is as follows:

• To reduce or eliminate the long-term risks to loss of life and property damage in Lee County and the participating cities from the full range of natural disasters.

4.2 GOALS

The following are the mitigation goals for this plan:

- Goal 1: Protect public health and safety.
- Goal 2: Protect existing and new properties.
- Goal 3: Increase public understanding, support, and demand for hazard mitigation.
- **Goal 4:** Build and support local capacity and commitment to continuously become less vulnerable to hazards.
- Goal 5: Promote growth in a sustainable manner.
- Goal 6: Maximize the resources for investment in hazard mitigation.

4.3 OBJECTIVES

The objectives are used to help establish priorities and support the agreed upon goals. The objectives are as follows:

- Objectives in support of Goal 1:
 - **Objective 1.1:** Advise the public about health and safety precautions to guard against injury and loss of life from hazards.
 - **Objective 1.2:** Maximize the utilization of the latest technology to provide adequate warning, communication, and mitigation of hazard events.
 - **Objective 1.3:** Reduce the damage to, and enhance protection of, dangerous areas during hazard events.
 - **Objective 1.4**: Protect critical facilities and services.
- Objectives in support of Goal 2:
 - **Objective 2.1:** Reduce repetitive losses to the National Flood Insurance Program.
 - **Objective 2.2:** Use the most cost-effective approaches to protect existing buildings and public infrastructure from hazards.

- **Objective 2.3:** Enact and enforce regulatory measures to ensure that development will not put people in harm's way or increase threats to existing properties.
- Objectives in support of Goal 3:
 - **Objective 3.1:** Heighten public awareness of the full range of natural hazards they face.
 - Objective 3.2: Educate the public on actions they can take to prevent or reduce the loss of life or property from all natural hazards.
 - **Objective 3.3:** Publicize and encourage the adoption of a ppropriate hazard mitigation measures.
- Objectives in support of Goal 4:
 - **Objective 4.1:** Build and s upport local pa rtnerships t o c ontinuously become l ess vulnerable to hazards.
 - **Objective 4.2:** Build a cadre of committed volunteers to safeguard the community before, during, and after a disaster.
 - **Objective 4.3:** Build hazard mitigation concerns into planning and budgeting processes.
- Objective in support of Goal 5:
 - **Objective 5.1:** Incorporate ha zard m itigation i nto t he long-range pl anning a nd development activities.
 - **Objective 5.2:** Promote beneficial uses of hazardous areas while expanding open space and recreational opportunities.
 - **Objective 5.3:** Utilize regulatory approaches to prevent creation of future hazards to life and property.
- Objectives in support of Goal 6:
 - **Objective 6.1:** Maximize the use of outside sources of funding.
 - **Objective 6.2:** Maximize participation of property owners in protecting their properties.
 - **Objective 6.3:** Maximize insurance coverage to provide financial protection against hazard events.
 - **Objective 6.4:** Prioritize mitigation projects, based on cost-effectiveness and starting with those sites facing the greatest threat to life, health and property.

CHAPTER 5. IDENTIFIED HAZARDS OF CONCERN AND RISK ASSESSMENT METHODOLOGY

Risk assessment is the process of measuring the potential loss of life, personal injury, economic injury, and property damage resulting from natural hazards. It allows emergency management personnel to establish early response priorities by identifying potential hazards and vulnerable assets. The process focuses on the following elements:

- **Hazard identification** Use all available information to determine what types of disasters may affect a jurisdiction, how often they can occur, and their potential severity.
- **Vulnerability identification** Determine the impact of natural hazard events on the people, property, environment, economy, and lands of the region.
- Cost evaluation Estimate the cost of potential damage or cost that can be avoided by mitigation.

The risk assessment for this hazard mitigation plan update evaluates the risk of natural hazards prevalent in the planning area and meets requirements of the DMA (44 CFR, Section 201.6(c)(2)).

5.1 IDENTIFIED HAZARDS OF CONCERN

For this plan, the Steering Committee considered the full range of natural hazards that could impact the planning area and then listed hazards that present the greatest concern. The process incorporated review of state and local hazard planning documents, as well as information on the frequency, magnitude, and costs associated with hazards that have impacted or could impact the planning area. Anecdotal information regarding natural hazards and the perceived vulnerability of the planning area's assets to them was also used. Table 2-1 lists the hazards identified in the previous 2011-2016 TCRFC Plan and the hazard ranking. Based on the review, this plan addresses the following hazards of concern:

- Dam/Levee Failure
- Drought
- Expansive Soils
- Extreme Heat
- Earthquake
- Flood

- Hurricane and Tropical Storm
- Lightning
- Tornado
- Wildfire
- Wind
- Winter Weather

• Hail

Several of these h azards w ere p rofiled t ogether because of t heir co mmon o ccurrence o r d amage assessments, su ch as drought a nd extreme heat, a nd t hunderstorms, lightning, hail, a nd wind. Thunderstorms were profiled in the 2011-2016 TCRFC plan but were not profiled separately in this plan update; how ever, the hazards associated with thunderstorms (hail, wind, lightning, and flooding) w ere profiled. Coastal e rosion was profiled in the *State of Texas Hazard Mitigation Plan;* however, co astal erosion was not profiled in this plan because of Lee County's and the participating cities' inland location. Furthermore, the steering committee considered the probability and potential impacts of the land subsidence hazard in the planning a rea and de termined it to be of n egligible risk in Lee County. Therefore, land subsidence is not profiled in this plan update.

5.2 CLIMATE CHANGE

Climate i neludes patterns of t emperature, pr ecipitation, hum idity, wind, and s easons. C limate p lays a fundamental role in shaping natural ecosystems, and the human economies and cultures that depend on

them. The term "climate change" refers to changes over a long period of time. It is generally perceived that climate change will have a measurable impact on the occurrence and severity of natural hazards around the world. Impacts include the following:

- Snow c over l osses w ill c ontinue, a nd d eclining s nowpack w ill a ffect s now-dependent w ater supplies and stream flow levels around the world.
- The risk of drought and the frequency, intensity, and duration of heat waves are expected to increase.
- More extreme precipitation is likely, increasing the risk of flooding.
- The world's average temperature is expected to increase.

Climate change will affect communities in a variety of ways. Impacts could include an increased risk for extreme events such as drought, storms, flooding, and wildfires; more heat-related stress; and the spread of existing or new vector-born disease into a community. In many cases, communities are already facing these problems to some degree. Climate change influences the frequency, intensity, extent, or magnitude of the problems.

This hazard mitigation plan update addresses climate change as a secondary impact for each identified hazard of c oncern. E ach c hapter a ddressing one of t he ha zards of c oncern i neludes a section with a qualitative discussion on the probable impacts of climate change for that hazard. While many models are being developed to assess the potential impacts of climate change, none are currently available to support hazard mitigation planning. As t hese models are d eveloped in the future, this risk assessment may be enhanced to better measure these impacts.

5.3 METHODOLOGY

The risk assessments in Chapter 8 through Chapter 17 describe the risks associated with each identified hazard of concern. Each chapter describes the hazard, the planning area's vulnerabilities, and probable event scenarios. The following steps were used to define the risk of each hazard:

- **Identify and profile each hazard** The following information is given for each hazard:
 - Geographic areas most affected by the hazard
 - Event frequency estimates
 - Severity estimates
 - Warning time likely to be available for response
- **Determine exposure to each hazard** Exposure was evaluated by overlaying hazard maps, when available, with an inventory of structures, facilities, and systems to identify which of them would be exposed to each hazard. When hazard mapping was not available, a more qualitative discussion of exposure is presented.
- Assess the vulnerability of exposed facilities Vulnerability of e xposed s tructures a nd infrastructure w as evaluated by interpreting the p robability of o ccurrence of each event and assessing structures, facilities, and systems that are exposed to each h azard. T ools such as geographic information system (GIS) and FEM A's hazard modeling program called Hazards, United S tates Multi-Hazard, or HAZUS-MH, were u sed to p erform this assessment for the dam/levee failure, earthquake, flood, and hurricane hazards. Outputs similar to those from HAZUS were generated for other hazards, using maps generated by the HAZUS program.

5.4 RISK ASSESSMENT TOOLS

5.4.1 Dam Failure, Earthquake, Flood, and Hurricane - HAZUS-MH

Overview

In 1997, FEMA developed the standardized HAZUS model to estimate losses caused by earthquakes and identify areas that face the highest risk and potential for loss. HAZUS was later expanded into a multi-hazard methodology, HAZUS-MH, with new models for estimating potential losses from dam failures, hurricanes, and floods.

HAZUS-MH is a GIS-based software program used to support risk assessments, mitigation planning, and emergency planning and r esponse. It provides a wide r ange of inventory data, such as de mographics, building stock, critical facility, transportation, and utility lifeline, and multiple models to estimate potential losses from natural disasters. The program maps and displays hazard data and the results of damage and economic loss estimates for buildings and infrastructure. Its advantages include the following:

- Provides a consistent methodology for assessing risk across geographic and political entities.
- Provides a way to save data so that it can readily be updated as population, inventory, and other factors change, and as mitigation planning efforts evolve.
- Facilitates the review of mitigation plans because it helps to ensure that FEMA methodologies are incorporated.
- Supports grant applications by calculating benefits using FEMA definitions and terminology.
- Produces h azard d ata a nd l oss estimates that c an b e u sed when communicating with lo cal stakeholders.
- Is administered by the local government and can be used to manage and update a hazard mitigation plan throughout its implementation.

Levels of Detail for Evaluation

HAZUS-MH provides de fault da ta for inventory, vulnerability, and hazards; this d efault d ata c an b e supplemented with local data to provide a more refined analysis. The model can carry out three levels of analysis, depending on the format and level of detail of information about the planning area:

- Level 1 All of the information ne eded to produce an estimate of losses is included in the software's default data. These data are derived from national databases and describe in general terms the characteristic parameters of the planning area.
- Level 2 More accurate estimates of losses require more detailed information about the planning area. To produce Level 2 estimates of losses, detailed information is required about local geology, hydrology, hydraulics, and building inventory, as well as data about utilities and critical facilities. This information is needed in a GIS format.
- Level 3 This level of analysis generates the most accurate estimate of losses. It requires detailed engineering and geotechnical information to customize it for the planning area.

Application for This Plan

This risk ass essment was conducted u sing HAZUS and GIS-based analysis methodology. The default HAZUS inventory database for Lee County and the participating cities was updated with the updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs. This enabled a HAZUS Level 2 analysis to be performed on some of the profiled hazards.

The following methods were used to assess specific hazards for this plan:

- **Dam/Levee Failure** Dam failure inundation mapping for the planning area was not available in a format u sable with HAZ US. T herefore, dam f ailure i nundation m aps w ere not us ed f or performing HAZUS risk analysis.
- **Earthquake** A Level 2 analysis is typically performed to assess earthquake risk and exposure for counties with a peak ground acceleration (PGA) greater than 3% g (percentage of gravity) (*FEMA How-To Guidance, Understanding Your Risks*, FEMA 386-2, p. 1 -7). No earthquake scenarios were selected for this plan since an earthquake event for the planning area is r are according to the 2013 State of Texas Hazard Mitigation Plan. Only a minimum Level 1 HAZUS analysis was profiled using the 500-Year Probability Event scenario.
- Flood A Level 2 flood analysis was performed using HAZUS.
- **Hurricane** A HAZUS Level 2 analysis was performed to assess hurricane and tropical storm risk and exposure for coastal and near coastal communities. The probabilistic option in the HAZUS hurricane module was used for analysis of this hazard.

5.4.2 Other Hazards of Concern

For hazards of concern that are not directly modeled in HAZUS, annualized losses were estimated using GIS-based analysis, historical data analysis, and statistical risk assessment methodology. Event frequency, severity indicators, expert opinions, and historical knowledge of the region was used for this assessment. The primary data source was the updated HAZUS inventory data updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs and augmented with state and federal data sets. Additional data sources for specific hazards were as follows:

- **Drought** National Drought Mitigation Center, U.S. Department of Agriculture (USDA) Census of Agriculture
- Extreme Heat Western Regional Climate Center
- Hail, Lightning, Tornado, Wind, and Winter Weather Data provided by National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center Storm Events Database.
- Wildfire Information on wildfire hazards areas was provided by the Texas A&M Forest Service Wildfire Risk Assessment Portal (TxWRAP), U.S. Geological Survey (USGS) Federal Wildfire History, F ire P rogram A nalysis F ire-Occurrence Database (FPA-FOD), a nd U SDA W ildfire Hazard Potential (WHP) data.

5.4.3 Limitations

Loss e stimates, ex posure assessments, and h azard-specific v ulnerability ev aluations rely on the b est available data and methodologies. Uncertainties are inherent in any loss estimation methodology and arise in part from incomplete scientific knowledge concerning natural hazards and their effects on the built environment. Uncertainties also result from the following:

- Approximations and simplifications necessary to conduct a study
- Incomplete or outdated inventory, demographic, or economic parameter data
- The unique nature, geographic extent, and severity of each hazard
- Mitigation measures already employed
- The amount of advance notice residents have to prepare for a specific hazard event

IDENTIFIED HAZARDS OF CONCERN AND RISK ASSESSMENT METHODOLOGY

These factors can affect loss estimates by a factor of two or more. Therefore, potential exposure and loss estimates are approximate and not deterministic. The results do not predict precise results and should be used only to understand relative risk for planning purposes and not engineering. Over the long term, Lee County a nd its planning partners will collect a dditional d ata to a ssist in e stimating p otential lo sses associated with other hazards.

CHAPTER 6. LEE COUNTY PROFILE

Lee County covers approximately 634 square miles and is located in southeast central Texas (see Figure 6-1). The county was named after Robert E. Lee, the Commander of the Confederate Army of Northern Virginia. The county borders Milam County to the north, Burleson County to the northeast, Washington County to the east, Fayette County to the southeast, Bastrop County to the southwest, and Williamson County to the northwest. Major highways in the county include U.S. Highways 77 and 290, and State Highway 21. As of the 2010 U.S. Census, there were 16,612 people residing in the county. The population density was 25 people per square mile. The county is located between Houston and Austin and its largest town, and county seat, is Giddings.

Figure 6-1. Location of the Lee County Planning Area within the State of Texas

6.1 HISTORICAL OVERVIEW

The majority of this section was summarized from the Handbook of Texas Online (Long 2010).

Lee County was named after Robert E. Lee, a Commander of the Confederate Army of Northern Virginia. The earliest k nown historical inhabitants of Lee County were the Tonkawa Indians, who were huntergatherers. The Tonkawas were friendly to the European settlers, but many fell ill to European diseases and raids by the Comanches and Cherokees. The remaining Tonkawas were removed by the United States government in 1855 to the Brazos Indian Reservation.

The area was first explored by Europeans around 1691, when Domingo Teran de los Rios sought a direct route between San Antonio de Bexar and the newly founded Spanish missions in East Texas. The route he laid out passed through what is now c entral Lee C ounty. In the mid-eighteenth cen tury the S panish established the San Xavier missions along the San Gabriel River in what is now Milam County, and the area was extensively explored during the colonial period. During the era of Mexican rule, the Lee County area was part of the Milam District, a region extending from El Paso to the Navasota River. After Texas gained independence, the region was a part of the five adjacent counties, Bastrop, Burleson, Fayette, Milam, and Washington.

Settlement in the area remained sparse until after the Texas Revolution when immigrants from the southern states began moving in. The agricultural economy of the region was varied and reflected its geographical and ethnic diversity. Wheat and corn were the two major cash crops, and cattle ranching was widespread throughout the county before 1860. Cotton growing was introduced in 1850s, but the amount of acreage devoted to it remained small.

In 1871, the new town of Giddings was founded, in what was then Washington County. Discussion began about the need for a new county so that residents would not have to travel so far to the county seat. In January 1873, a meeting of citizens from western Burleson and Washington Counties and nor theastern Bastrop and Fayette Counties resulted in a resolution calling for the establishment of a new county to be named in honor of Robert E. Lee. The Texas Legislature passed the bill in April 1874. A boundary dispute, however, began over the western segment of Burleson County, which lawmakers had originally intended to include in a new county called Franklin County. Franklin County was to be formed just north of Lee County. When the Franklin County bill was indefinitely postponed, questions arose about what to do with the territory. Senator Seth Shepard introduced a bill to make the disputed area part of Lee County. The measure passed quickly and became law on May 2, 1874.

The new c ounty i ncluded por tions of B urleson, W ashington, B astrop, and F ayette Counties a nd w as bounded on the east by East Yegua Creek and on the southeast by Cedar Creek. The two leading contenders for the county seat were Giddings and Lexington. An election was held in 1874 after a heated and bitter campaign. Although Lexington was the older town and was surrounded by better farmland, Giddings won, primarily because it was a railroad town. A two-story courthouse with a mansard roof was completed in 1878. After the first courthouse burned in 1897, a new Romanesque Revival structure, designed by famed San Antonio courthouse architect James Riely Gordon, was built in 1899.

The Civil War depressed the local economy though battles did not take place in the county. Between 1874 and 1900, the Lee County again began to prosper. The county population for the 1880 U.S. Census was 8,937 and increased to 14,593 by 1900. The number of African American residents grew rapidly during this time. Large numbers of Germans and Czechs, as well as smaller numbers of Moravians and Danes, moved into the county during this period.

The last decade of the nineteenth century was a period of economic growth. Although cotton ranked first in total acreage, a substantial amount of land was dedicated to the production of corn, oats, and other grains. After 1900, however, cotton became a very important cash crop and by 1920, more than half of the cropland was used for cotton production. This quickly changed during the Great Depression, when cotton production

fell dramatically and corn replaced cotton as the leading cash crop. After World War II, cropland in the county decreased steadily. By 1989, roughly 16% of the county's farmland was under production. Though cash c rops d eclined, c attle ranching, s wine r aising, a nd poul try pr oduction be came a n i ncreasingly important part of the agricultural economy.

The growth of the agricultural economy in the late nineteenth century was aided by improvements in the transportation network. The Houston and Texas Central Railway extended its lines from Brenham through Giddings to Austin in 1871, and Giddings became a major shipping point for county farmers and businesses. In 1890, the San Antonio and Aransas Pass Railway, later consolidated with the Southern Pacific, was constructed across the south central half of the county to connect with the Houston and Texas Central at Giddings. R oads w ere g enerally poor t hroughout L ee C ounty unt il the 1930s, w hen e xtensive improvements, including paving all major roads, took place.

6.2 MAJOR PAST HAZARD EVENTS

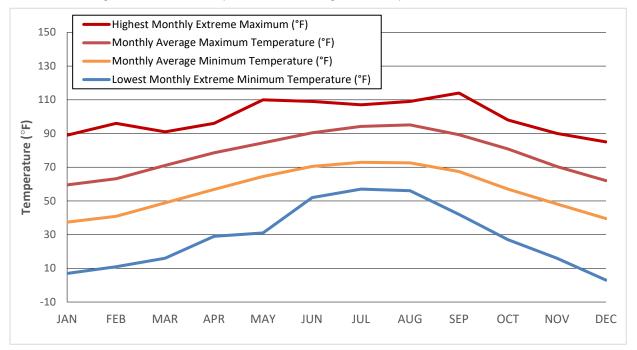
Federal disaster declarations are typically issued for hazard events that cause more damage than state and local governments can handle without assistance from the federal government. However, no specific dollar loss threshold has been e stablished for these de clarations. A federal disaster d eclaration p uts federal recovery pr ograms i nto m otion t o help di saster v ictims, bus inesses, and public e ntities. S ome of the programs are matched by state programs. The planning area has experienced 13 events since 1987 for which federal disaster declarations were issued. These events are listed in Table 6-1.

Review of t hese events h elps i dentify t argets f or risk r eduction and w ays t o i ncrease a community's capability to avoid large-scale events in the future. Still, many natural hazard events do not trigger federal disaster d eclaration protocol b ut have significant impacts on t heir communities. These events are also important to consider in establishing recurrence intervals for hazards of concern. More detailed event tables can be found in the individual hazard profile sections.

	TABLE 6-1. FEDERAL DISASTER DECLARATIONS IN LEE CO	OUNTY
Disaster Declaration ^a	Description	Incident Date
DR-4223	Severe Storms, Straight-line Winds, Tornadoes, and Flooding	05/04/2015 - 06/22/2015
DR-4029	Wildfires	08/30/2011-12/31/2011
DR-1999	Wildfires	04/06/2011-08/29/2011
EM-3284	Wildfire	03/14/2008-09/01/2008
DR-1624	Extreme Wildfire Threat	11/27/2005-05/14/2006
DR-1606	Hurricane Rita	09/23/2005-10/14/2005
EM-3261	Hurricane Katrina	09/20/2005-10/01/2005
EM-3216	Hurricane Rita Evacuation	08/29/2005-10/01/2005
EM-3142	Extreme Fire Hazards	08/01/1999-12/10/1999
DR-1239	Tropical Storm Charley	08/22/1998-08/31/1998
DR-1041	Severe Thunderstorm and Flooding	10/14/1994-11/08/1994
EM-3113	Extreme Fire Hazard	08/30/1993-11/15/1993
DR-802	Severe Storms and Tornadoes	11/15/1987-11/16/1987

TABLE 6-1. FEDERAL DISASTER DECLARATIONS IN LEE COUNTY

Disaster Declaration^a Description


Incident Date

a. Federal disaster declarations are coded as follows: DR = Major Disaster Declaration; EM = Emergency Declaration Source: FEMA Disaster Declarations Summary - Open Government Dataset (http://www.fema.gov/media-library/assets/documents/28318?id=6292)

6.3 CLIMATE

Lee County and the participating cities are hot and humid in the summer and cool in winter. A verage temperatures range from 83 degrees Fahrenheit (°F) in the summer to 50°F in the winter. The Western Regional Climate Center reports data from the Lexington weather station in Lee County. Table 6-2 contains temperature summaries for the station. Figure 6-2 graphs the daily temperature averages and extremes from June 1, 1948, through March 31, 2013. Figure 6-3 and Figure 6-4 show the geographic distribution of annual average minimum and annual average maximum temperatures in Lee County compared to the State of Texas from 1981 to 2010.

1948 - 2013 39.2°F 50.4°F
50.4°F
93.2°F
82.6°F
111°F, September 6, 2000
2°F, December 23, 1989
102.2
27.4

Source: Western Regional Climate Center, http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?tx2768

Figure 6-2. Lexington Station Monthly Temperature Data (1984-2013)

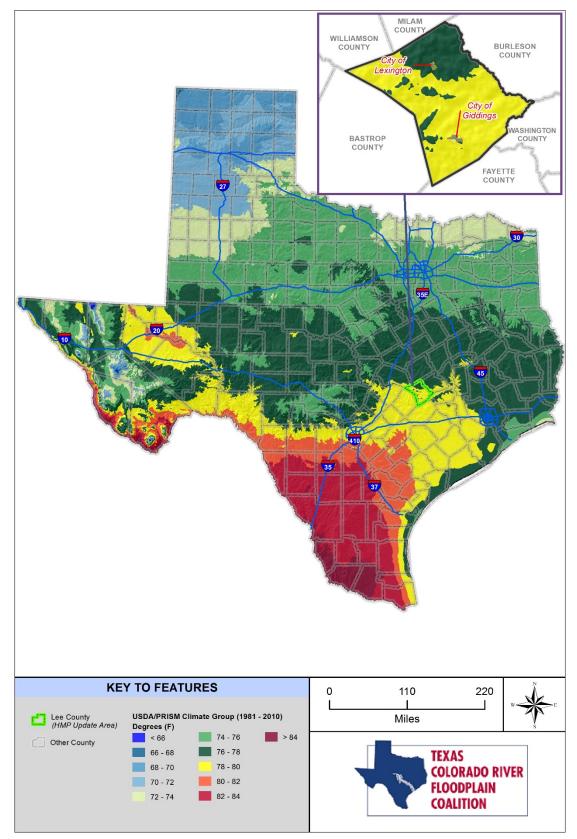


Figure 6-3. Annual Average Maximum Temperature (1981-2010)

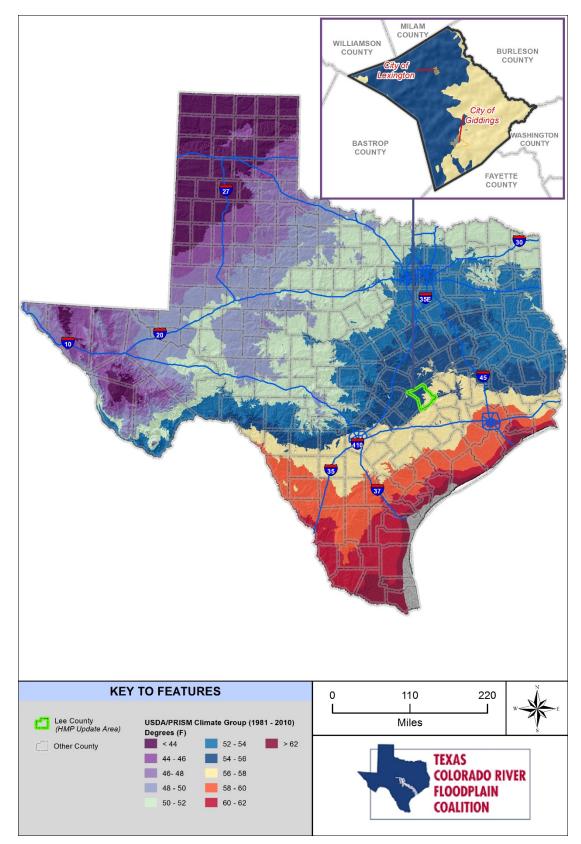
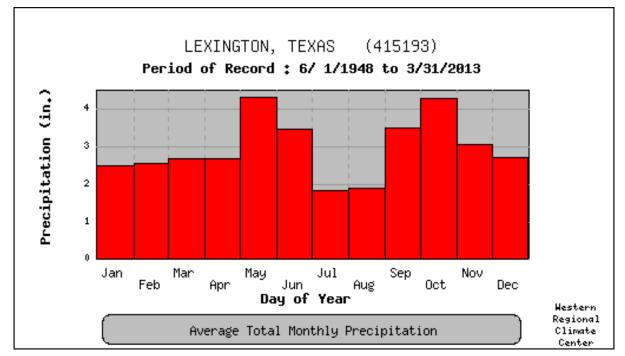



Figure 6-4. Annual Average Minimum Temperature (1981-2010)

Rainfall is highest in May and October. Snowfalls are infrequent. The average annual precipitation is 35.44 inches. Severe thunderstorm occur mostly in the spring. Based on information measured by the National Lightning Detection Network, the State of Texas is ranked 17th in the nation for cloud-to-ground lightning flashes per square mile from 1997 to 2010. The average flashes during this timeframe was 11.3 per square mile. Figure 6-5 shows the average monthly precipitation in Lee County. Figure 6-6 shows geographic distribution of annual average precipitation in Lee County compared to the State of Texas.

Source: http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?tx1911

Figure 6-5. Average Monthly Precipitation (1948-2013)

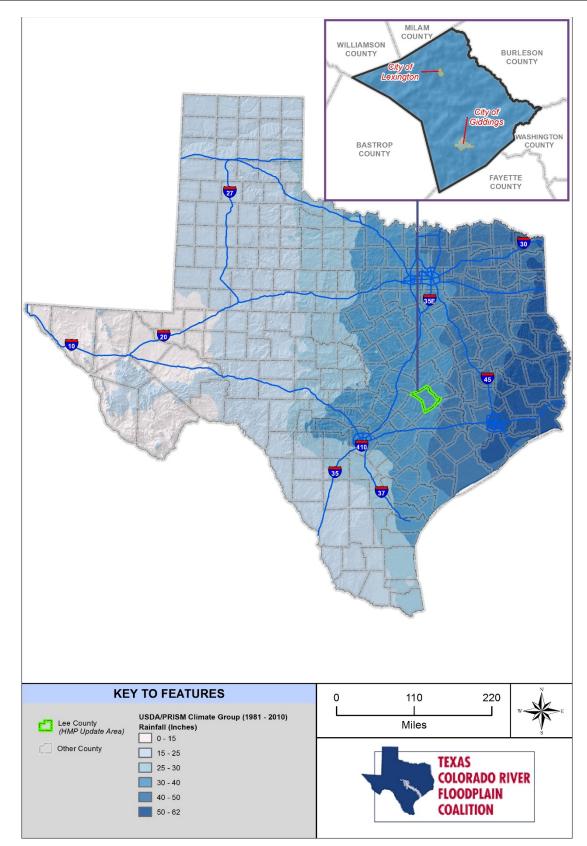


Figure 6-6. Geographic Distribution of Annual Average Precipitation (1981-2010)

6.4 GEOLOGY AND SOILS

Texas is broadly divided into four regions by physical geography features such as landforms, climate, and vegetation. The central part of Lee County is in the Blackland Prairies region, where oak, pecan, elm, and mesquite trees and thick grasses grow in the stream basins. The rest of the county is in the Post Oak Savannah vegetation region, characterized by tall grasses, post oak, and blackjack oak. There are scattered thickets of wild plum, black and red haw, yaupon, and wild persimmon. Dewberries, huckleberries, and blackberries as well as mustang, fox, and muscadine grapes grow in the county. Elevation ranges from 250 to 500 feet above sea level. Figure 6-7 shows the Texas natural regions with Lee County highlighted.

Lee County is divided into three basic soil regions. In the northwest, light-colored loamy or sandy soils lie over mottled or reddish clayey or loamy subsoils. In the central strip, light-colored loams overlie gray to black clayey soils and deep reddish-brown, clayey subsoils. The remainder of the county has light-colored soils with sandy surfaces and mottled, clayey subsoils.

Most of the county is drained by the three branches of Yegua Creek—East Yegua, Middle Yegua, and West Yegua creeks—and their tributaries, including Allen, Brushy, Pin Oak, Bluff, and Elm Creeks. Much of the southern third of the county is drained by Knobbs, Rabbs, and Nails Creeks. The geologic section containing the county aquifers is made up of alternating beds of friable sandstone, highly indurated sandstone, silt, siltstone, clay, shale, and thin limestone. Iron is a common problem for drinking water wells.

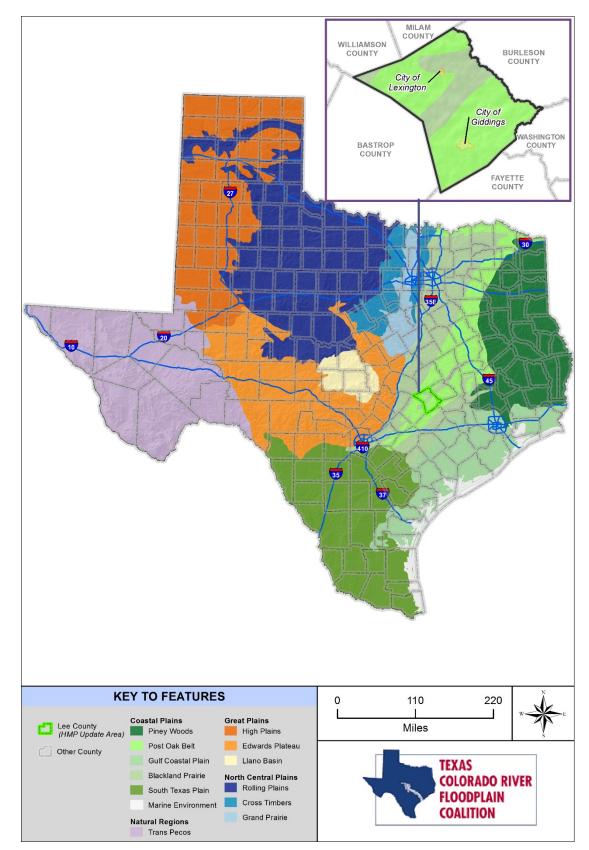


Figure 6-7. Natural Regions of Texas and Lee County

6.5 CRITICAL FACILITIES AND INFRASTRUCTURE

Critical facilities and infrastructure are essential to the health and welfare of the population. These assets become especially important after a hazard event. As defined for this hazard mitigation plan update, critical facilities include but are not limited to the following:

- Essential services facilities:
 - Public safety facilities (police stations, fire and rescue stations, emergency vehicle and equipment storage, and, emergency operation centers)
 - Emergency medical facilities (hospitals, ambulance service centers, urgent care centers having e mergency t reatment f unctions, a nd n on-ambulatory su rgical s tructures b ut excluding c linics, doctors' offices, a nd non-urgent c are m edical s tructures t hat do n ot provide these functions)
 - Designated emergency shelters
 - Communications (main hubs for telephone, broadcasting equipment for cable systems, satellite dish systems, cellular systems, television, radio, and other emergency warning systems, but excluding towers, poles, lines, cables, and conduits)
 - Public u tility p lant facilities for g eneration and distribution (hubs, t reatment pl ants, substations and pumping stations for water, power and gas, but not including towers, poles, power lines, buried pipelines, transmission lines, distribution lines, and service lines)
 - Air transportation lifelines (airports [municipal and larger], helicopter pads and structures serving emergency functions, and associated infrastructure [aviation control towers, air traffic control centers, and emergency equipment aircraft hangars])
- Hazardous materials facilities:
 - Chemical and pharmaceutical plants
 - Laboratories c ontaining hi ghly volatile, f lammable, explosive, t oxic, or w ater-reactive materials
 - Refineries
 - Hazardous waste storage and disposal sites
 - Aboveground gasoline or propane storage or sales centers
- At-risk population facilities:
 - Elder care centers (nursing homes)
 - Congregate care serving 12 or more individuals (day care and assisted living)
 - Public and private schools (pre-schools, K-12 schools, before-school and after-school care serving 12 or more children)
- Facilities vital to restoring normal services:
 - Essential g overnment ope rations (public r ecords, c ourts, jails, bu ilding pe rmitting a nd inspection s ervices, community a dministration and m anagement, m aintenance a nd equipment centers)
 - Essential s tructures f or p ublic co lleges a nd u niversities (dormitories, o ffices, an d classrooms only)

Table 6-3 and Table 6-4 summarize the critical facilities and infrastructure in each municipality and unincorporated county areas. This information was obtained from HAZUS-MH, county assessor data, or from community personnel.

TABLE 6-3. CRITICAL FACILITIES IN THE PLANNING AREA						
City of Unincorporated Facility Type City of Giddings Lexington or Other Lee County Tota						
Fire Stations	1	1	9	11		
Police Stations	3	1	0	4		
Medical and Health	2	1	0	3		
Emergency Operations Center	0	0	0	0		
School	10	4	2	16		
Hazardous Materials	3	0	2	5		
Government Functions	6	1	0	7		
Total	25	8	13	46		

TABLE 6-4. CRITICAL INFRASTRUCTURE IN THE PLANNING AREA						
Facility Type	City of Unincorporated e City of Giddings Lexington or Other Lee County Total					
Communication	3	0	0	3		
Power Facility	3	1	5	9		
Potable Water/ Wastewater Facility	8	3	10	21		
Oil Facilities	10	0	622	632		
Dam Location	0	0	31	31		
Airport Facility	1	0	0	1		
Airport Runway	1	0	0	1		
Other Transportation	1	0	0	1		
Bridge	2	0	118	120		
Total	29	4	786	819		

Figure 6-8 through Figure 6-13 show the location of critical facilities and infrastructure in the county and the participating cities. Due to the sensitivity of this information, a detailed list of facilities is not provided. The list is on file with each planning partner. Critical facilities and infrastructure were analyzed in HAZUS to help rank risk and identify mitigation actions. The risk assessment for each hazard discusses critical facilities and infrastructure with regard to that hazard.

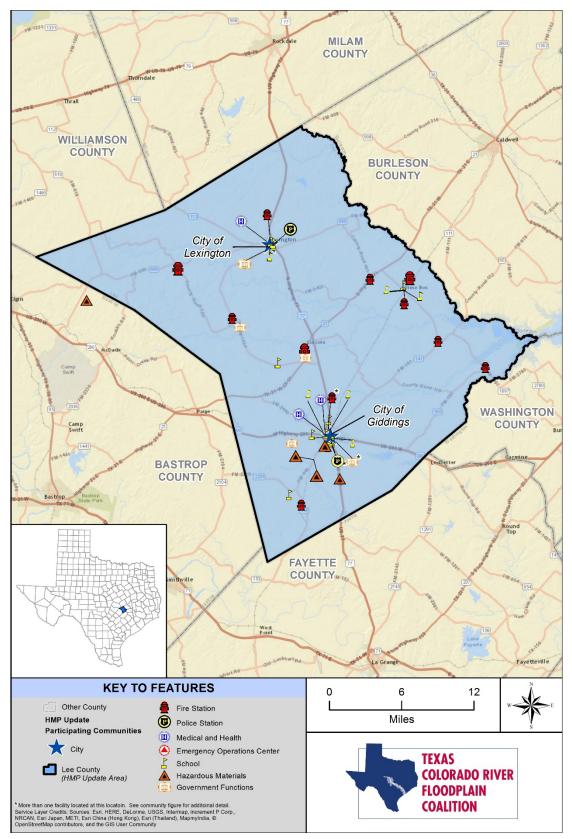


Figure 6-8. Critical Facilities in Lee County

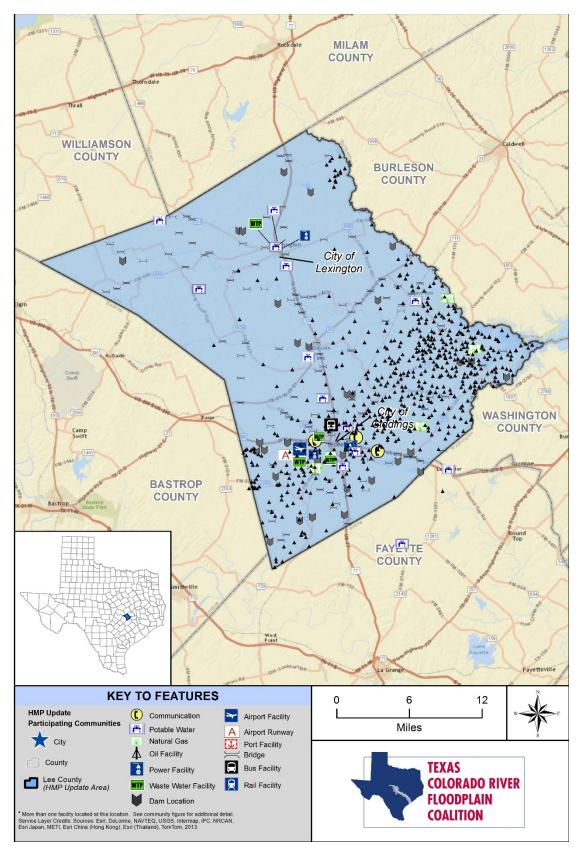


Figure 6-9. Critical Infrastructure in Lee County

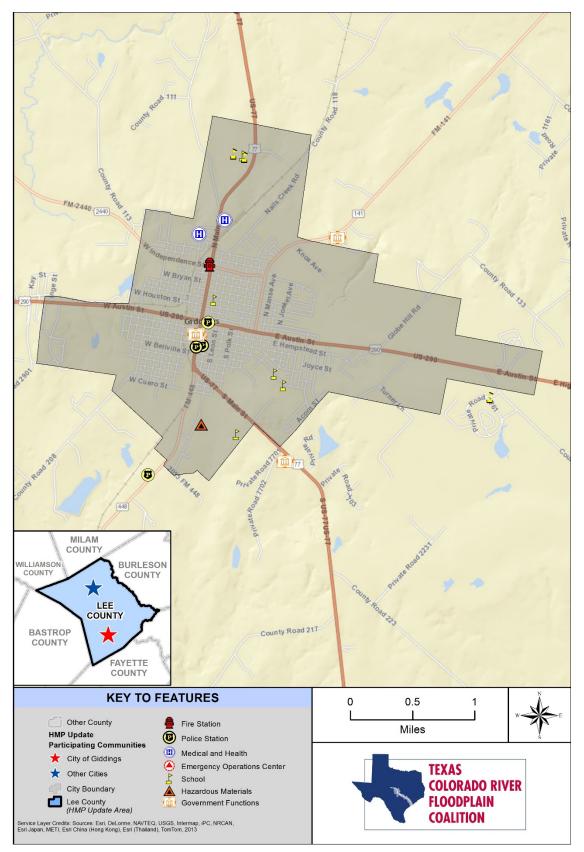


Figure 6-10. Critical Facilities in the City of Giddings

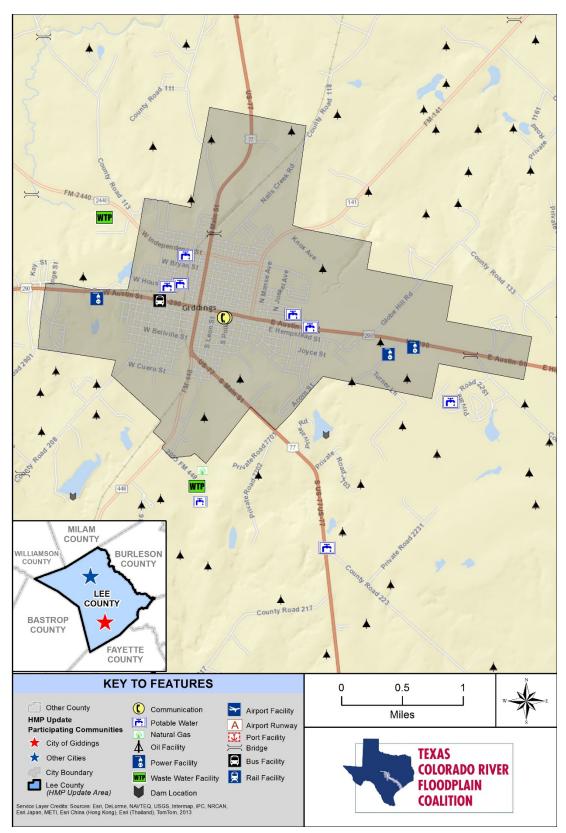


Figure 6-11. Critical Infrastructure in the City of Giddings

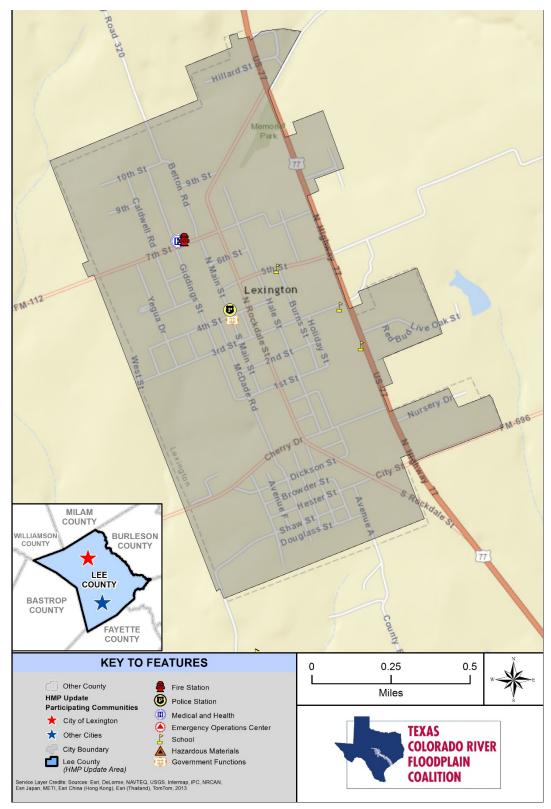


Figure 6-12. Critical Facilities in the City of Lexington

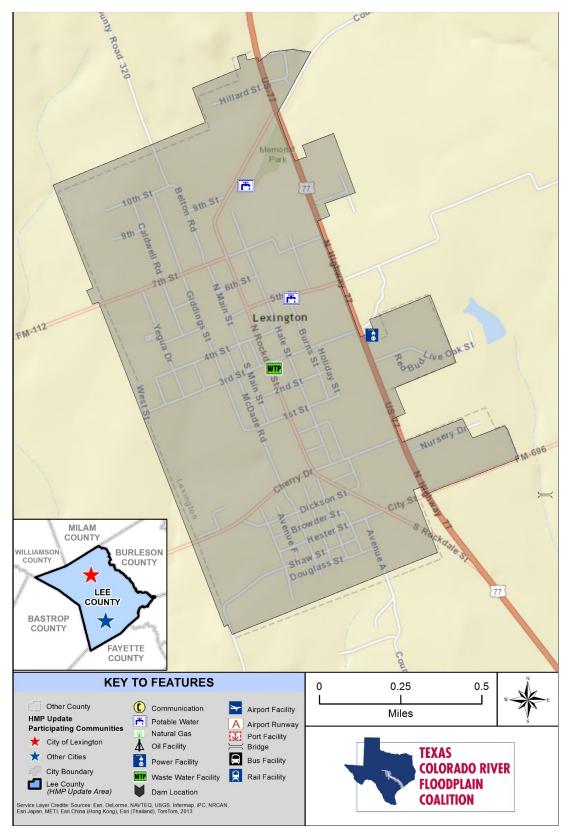


Figure 6-13. Critical Infrastructure in the City of Lexington

6.6 DEMOGRAPHICS

Information on current and historic population levels and future population projections is needed for making informed decisions about future planning. Population directly relates to l and ne eds s uch a s housing, industry, stores, public facilities and services, and transportation. Population changes are useful socioeconomic indicators, as a growing population generally indicates a growing economy, and a decreasing population signifies economic decline.

Some populations are at greater risk from hazard events because of decreased resources or physical abilities. Elderly people, for example, may be more likely to require additional assistance. Research has shown that people living near or below the poverty line, the elderly (especially older single men), the disabled, women, children, ethnic minorities and renters all experience, to some degree, more severe effects from disasters than the general population. These vulnerable populations may vary from the general population in risk perception; living conditions; access to information before, during and after a hazard event; capabilities during an event; and access to resources for post-disaster recovery. Indicators of vulnerability—such as disability, a ge, pov erty, a nd m inority r ace a nd ethnicity—often overlap spatially and often in the geographically most vulnerable locations. Detailed spatial analysis to locate areas where there are higher concentrations of vulnerable community members would assist the county and the participating cities in extending focused public outreach and education to these most vulnerable citizens. Select U.S. Census demographic and social characteristics for Lee County are shown in Table 6-5.

TABLE 6-5. LEE COUNTY DEMOGRAPHIC AND SOCIAL CHARACTERISTICS (2010)				
	Lee County	City of Giddings	City of Lexington	
Gender/Age (% of Total Population)				
Male	49.8	49.0	47.0	
Female	50.2	51.0	53.0	
Under 5 years	6.1	8.5	6.9	
65 years and over	15.8	14.5	14.2	
Race/Ethnicity (% of Total Population)				
White	78.9	68.7	84.8	
American Indian/Alaska Native	0.6	1.2	0.5	
Asian	0.3	0.9	0	
Black or African American	10.9	11.9	12.1	
More Than One Race	1.9	2.5	1.6	
Hispanic or Latino (of any race) ¹	22.4	42.7	9	
Education High School Graduate or Higher (% of Total Population, 25+ years)	81.6	58.7	84.9	

ensus Bureau, factfinder.census.gov

¹The U.S. Census Bureau considers the Hispanic/Latino designation an ethnicity, not a race. The population self-identified as "Hispanic/Latino" is also represented within the categories in the "Race" demographic.

6.6.1 Population

The U.S. Census B ureau estimated a population of 16,628 for Lee County in 2013. Table 6-6 shows planning area population data from 1990 through 2013. The total Lee County population increased 21.8% from 1990 to 2000 and increased another 6.2% from 2000 to 2013. The Cities of Giddings and Lexington are the county's principal population centers.

TABLE 6-6. LEE COUNTY POPULATION				
		Total Po	pulation	
	1990	2000	2010	2013 ^a
City of Giddings	4,093	5,105	4,881	5,009
City of Lexington	953	1,178	1,177	1,164
Unincorporated Area and Other ^b	7,808	9,374	10,554	10,455
Lee County Total	12,854	15,657	16,612	16,628
Source: Texas State Library and Archives Commission and Texas Association of Counties https://www.tsl.texas.gov/ref/abouttx/population.html http://www.county.org/about-texas-counties/county-data/Documents/towns.html ¹				
a. Data from Texas Association of Counties b. Includes non-participating communities				

Figure 6-14 shows 5-year population changes in Lee County and the State of Texas from 1990 to 2010 and the 3-year change from 2010 to 2013. Between 1990 and 2013, the State of Texas' population grew by 53% (about 2.3% per year) while Lee County's population increased by 29% (1.3% per year).

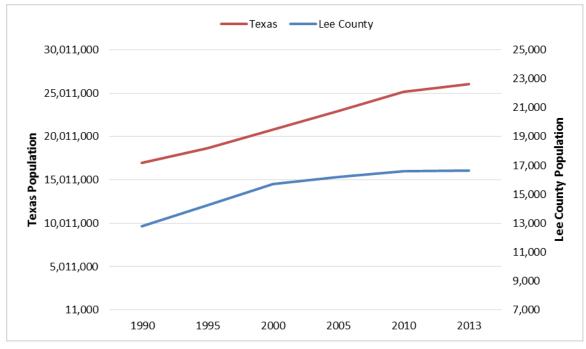


Figure 6-14. State of Texas and Lee County Population Growth

6.6.2 Age Distribution

As a group, the elderly are more apt to lack the physical and economic resources necessary for response to hazard events and are more likely to suffer health-related consequences making recovery slower. They are more likely to be vision, hearing, or mobility impaired, and more likely to experience mental impairment or dementia. Additionally, the elderly are more likely to live in assisted-living facilities where emergency preparedness occurs at the discretion of facility operators. These facilities are typically identified as "critical facilities" by emergency managers because they require extra notice to implement evacuation. Elderly residents living in their own homes may have more difficulty evacuating their homes and could be stranded in dangerous situations. This population group is more likely to need special medical attention, which may not be readily available during natural disasters due to isolation caused by the event. Specific planning attention for the elderly is an important consideration given the current aging of the national population.

Children under 14 are particularly vulnerable to disaster events because of their young age and dependence on others for basic necessities. Very young children may additionally be vulnerable to injury or sickness; this vulnerability can be worsened during a natural disaster because they may not understand the measures that need to be taken to protect themselves from hazards.

The overall age distribution for the planning area is illustrated in Figure 6-15. Based on U.S. Census data estimates, 15.8% of the planning area's population is 65 or older. U.S. Census data does not provide information regarding disabilities in the planning area's over-65 population. U.S. Census estimates for 2013 indicate that 20.1% of Lee County families have children under 18 and are below the poverty line.

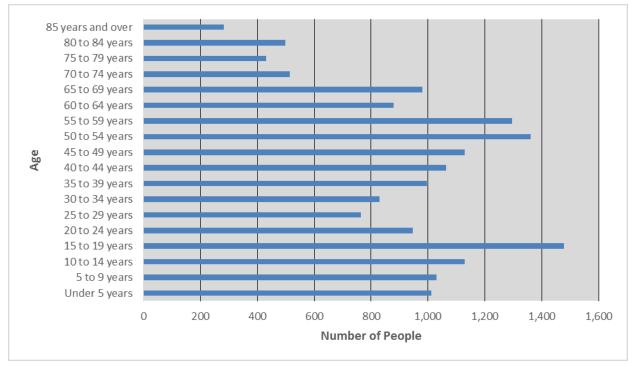


Figure 6-15. Lee County Age Distribution

6.6.3 Disabled Populations

The 2010 U.S. Census estimated that 57 million non-institutionalized Americans with disabilities live in the U.S. This equates to about one-in-five persons. People with disabilities are more likely to have difficulty responding to a hazard event than the general population. Local government is the first level of response to assist these individuals, and coordination of efforts to meet their access and functional needs is paramount

to life safety efforts. It is important for emergency managers to distinguish between functional and medical needs in order to plan for incidents that require evacuation and sheltering. Knowing the percentage of population with a disability will allow emergency management personnel and first responders to have personnel available who can provide services needed by those with access and functional needs. According to the 2010 U.S. Census, 18% of the population in the planning area lives with some form of disability.

6.6.4 Ethnic Populations

Research shows that minorities are less likely to be involved in pre-disaster planning and experience higher mortality rates during a disaster event. Post-disaster recovery can be less effective for ethnic populations and is often characterized by cultural insensitivity. Since higher proportions of ethnic minorities live below the poverty line than the majority white population, poverty can compound vulnerability. According to the 2010 U.S. Census, the ethnic composition of Lee County is predominantly white, at about 78.9%. The largest minority population is Hispanic or Latino at 22.4%. Figure 6-16 shows the population distribution by race and ethnicity in Lee County. The values shown on Figure 6-16 exceed 100% because according to the U.S. Census, Hispanic or Latino is listed as an ethnicity, not a race. Therefore, the Hispanic or Latino designation encompasses several races.

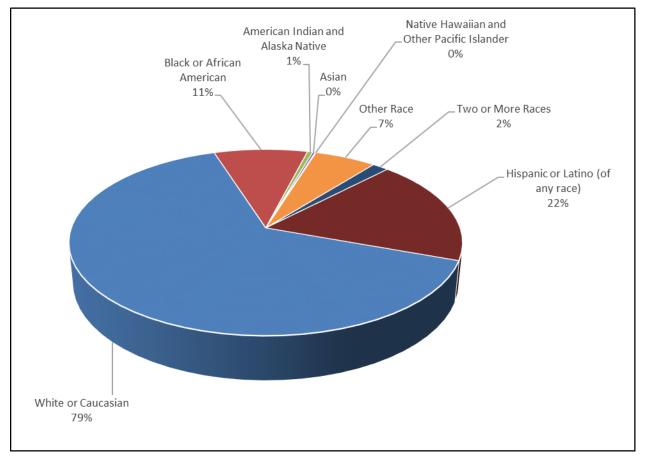


Figure 6-16. Lee County Ethnic Distribution

Lee County has a 2.6% foreign-born population. Other than English, the most commonly spoken language in Lee County is Spanish. The U.S. Census estimates 8.1% of the residents speak English "less than very well."

6.7 ECONOMY

Select 2013 economic characteristics estimated for Lee County by the U.S. Census Bureau are shown in Table 6-7.

TABLE 6-7. LEE COUNTY ECONOMIC CHARACTERISTICS				
	Lee County	City of Giddings	City of Lexington	
Families Below Poverty Level	8.3%	19.8%	11.7%	
Individuals Below Poverty Level	12.4%	23.5%	19.8%	
Median Home Value	\$118,400	\$101,200	\$87,500	
Median Household Income	\$51,534	\$41,250	\$39,851	
Per Capita Income	\$25,123	\$16,028	\$19,130	
Population >16 Years Old in Labor Force	60.3%	57%	66.7%	
Population Employed	56.8%	53.9%	59.6%	

6.7.1 Income

In the United States, individual households are expected to use private resources to some extent to prepare for, respond to, and recover from disasters. This means that households living in poverty are automatically disadvantaged when confronting hazards. Additionally, the poor typically occupy more poorly built and inadequately maintained housing. Mobile or modular homes, for example, are more susceptible to damage in earthquakes and floods than other types of housing. In urban areas, the poor often live in older houses and apartment complexes, which are more likely to be made of un-reinforced masonry, a building type that is particularly susceptible to damage during earthquakes. Furthermore, residents below the poverty level are less likely to have insurance to compensate for losses incurred from natural disasters. This means that residents below the poverty level have a great deal to lose during an event and are the least prepared to deal with potential losses. The events following Hurricane Katrina in 2005 illustrated that personal household economics significantly impact people's decisions on evacuation. Individuals who cannot afford gas for their cars will likely decide not to evacuate.

Based on U.S. Census Bureau estimates, per capita income in the planning area in 2013 was \$25,123 and the median household income was \$51,534. It is estimated that 16.5% of households receive an income between \$100,000 and \$149,999 per year and 7.8% are above \$150,000 annually. Families with incomes below the poverty level in 2013 made up 8.3% of all families and 12.4% of the total population in Lee County.

6.7.2 Employment Trends

According to the U.S. Bureau of Labor Statistics, Lee County's unemployment rate as of December 2014 was 2.9 %, compared to a statewide rate of 4.6%. U.S. Bureau of Labor Statistics, 2014

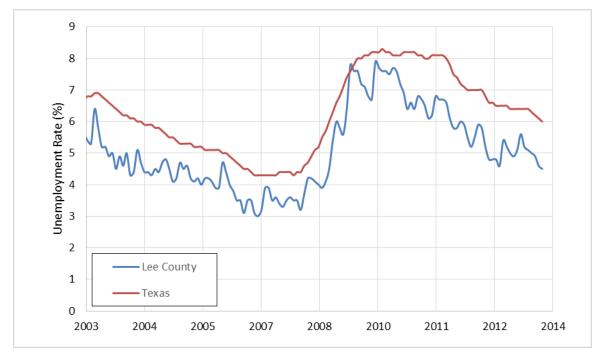


Figure 6-17 compares the State of Texas and Lee County's unemployment trends from 2003 through 2013. Lee County's unemployment rate was lowest in 2007 at 3% and peaked in 2009 at 7.9%. According to the 2013 U.S. Census data, 60.3% of Lee County's population 16 years and older is in the labor force, including 46% of women and 54% of men.

Source: U.S. Bureau of Labor Statistics, 2014

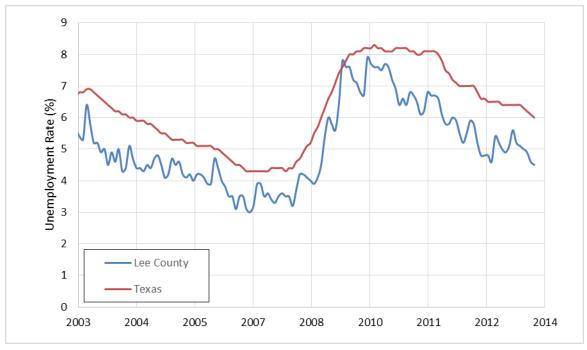


Figure 6-17. Lee County Unemployment Rate (2003-2013)

6.7.3 Occupations and Industries

According to 2013 U.S. Census data, the planning area's economy is strongly based in the education, health care and social assistance industries (22.8% of total employment), followed by the retail trade (12.2%), construction (10.1%), and professional, scientific management, a dministrative, and waste management services (4.2%). Figure 6-18 shows the distribution of industry types in Lee County, based on share of total employment.

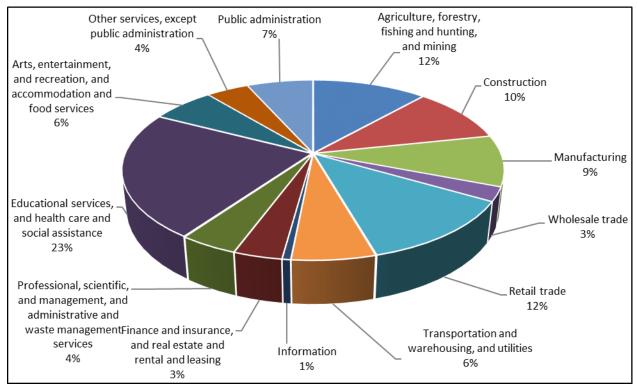


Figure 6-18. Percent of Total Employment by Industry in Lee County

6.8 TRENDS IN DEVELOPMENT

The municipal planning partners have adopted plans that govern land use decision and policy making in their jurisdictions. Decisions on land use will be governed by these programs. This plan will work together with these programs to support wise land use in the future by providing vital information on the risk associated with natural hazards in the planning area.

It is the goal that all municipal planning partners will incorporate this hazard mitigation plan update in their comprehensive plans (if applicable) by reference. This will help ensure that future development trends can be established with the benefits of the information on risk and vulnerability to natural hazards identified in this plan. The participating communities have not formally tracked the impacts of changes in development over the last five years and how these changes in development were influenced by the risk associated with natural hazards in the county or the communities. As part of this hazard mitigation plan update, Lee County and the Cities of Giddings and Lexington are now equipped with the knowledge and the tools to track and implement changes to the plan during their a nnual reviews and 5-year u pdates to reflect d evelopment changes. However, it should be noted that the mitigation actions developed and prioritized through the mitigation action ranking process reflect the current development conditions and applicable policies.

6.8.1 Lee County

Lee County consists primarily of agricultural land, forest, and grassland/prairie. Developed land accounts for only 5.6% of the county. Table 6-8 lists the present land use in Lee County.

TABLE 6-8. PRESENT LAND USE IN PLANNING AREA					
Present Use Classification Area (acres) % of Total Land Area					
Agriculture	175,902	43.4			
Developed, Open Space	19,456	4.7			
Developed, High Intensity	247	<0.1			
Developed, Medium Intensity	1,008	0.2			
Developed, Low Intensity	2,622	0.6			
Forest Land	88,287	21.8			
Grassland/Prairie	91,264	22.6			
Water/Wetland	26,909	6.6			
Total	405,695	100			

As described in Chapter 6.6.1, the population of Lee County increased by 29% from 1990 to 2013. Most of the population in the county lives in unincorporated areas.

Housing units in Lee County are mainly single-family detached homes; however, there are approximately 1,332 mobile homes in the county. According to the U.S. Census Bureau, there were no residential building permits reported in Lee County for 2007 through 2009 (the latest data available). As such, unincorporated Lee County would not see an increase in vulnerability as a result of residential development. All residential building permits were issued within the City of Giddings or the City of Lexington.

6.8.2 City of Giddings

According to 2013 U.S. Census data, the population of the City of Giddings increased approximately 20% from 1990 to 2013, as shown on Figure 6-19. The number of residential building permits reported in the City of Giddings had steadily declined from a high of 12 in 2007 to a low of 1 in 2010, until increasing again to 7 in 2011 and peaking at 46 in 2012, as shown on Figure 6-20. With the residential building permits on the increase from 2011 to 2012, the City of Giddings would be impacted by an increase in vulnerability. According to the 2010-2014 American Community Survey, 1,407 homes in the City of Giddings are single-family homes and 227 are mobile homes.

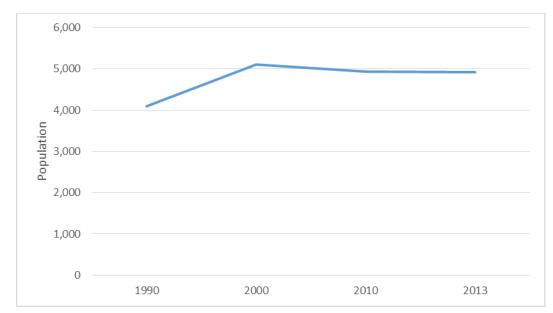


Figure 6-19. Population of City of Giddings

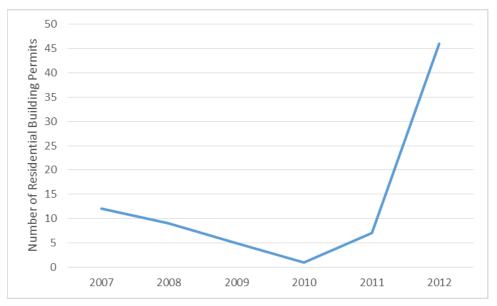


Figure 6-20. Residential Building Permits in the City of Giddings

6.8.3 City of Lexington

According to 2013 U.S. Census data, the population of the City of Lexington increased approximately 61% from 1990 to 2013, as shown on Figure 6-21. The number of residential building permits reported in the City of Lexington has remained very small, reaching only 3 in 2010, as shown on Figure 6-22. The City of Lexington would be impacted minimally and vulnerability would not be significantly increased by the small number of r esidential building permits i ssued s ince 201 1. According t o t he 2010 -2014 A merican Community S urvey, 432 homes in the City of Lexington are single-family hom es and 123 are mobile homes.

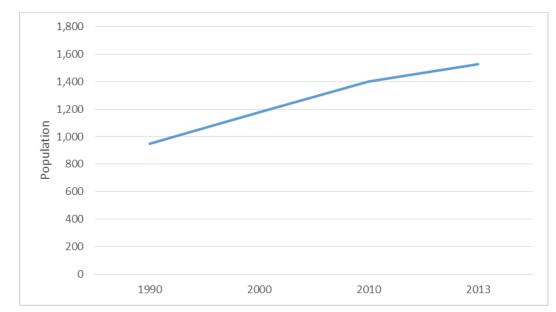


Figure 6-21. Population of City of Lexington

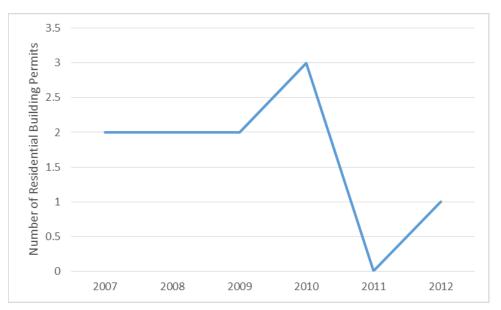


Figure 6-22. Residential Building Permits in the City of Lexington

6.9 LAWS AND ORDINANCES

Existing laws, ordinances, and plans at the federal, state, and local level can support or impact hazard mitigation actions identified in this plan. Hazard mitigation plans a re r equired to include r eview and incorporation, if appropriate, of existing plans, studies, reports, and technical information as part of the planning process (44 CFR, Section 201.6(b)(3)). Pertinent federal, state, and local laws are described below.

These laws, p rograms, d ocuments, and d epartments were r eviewed to i dentify the p lans, r egulations, personnel, and funding mechanisms available to the county, the City of Giddings, and the City of Lexington to impact and mitigate the effects of natural hazards. The county and cities have the capacity to expand their hazard mitigation capabilities through the training of existing staff, cross-training staff across program

areas, and hiring of additional staff, as well as acquiring additional funding through the attainment of grant funds, raising of taxes, and levying of new taxes.

6.9.1 Federal

Disaster Mitigation Act

The DMA is the current federal legislation addressing hazard mitigation planning. It emphasizes planning for disasters before they occur. It specifically addresses planning at the local level, requiring plans to be in place before Hazard Mitigation Grant Program (HMGP) funds are available to communities. This plan is designed to meet the requirements of DMA, improving the planning partners' eligibility for future hazard mitigation funds.

Endangered Species Act

The federal Endangered Species Act (ESA) was enacted in 1973 to conserve species facing depletion or extinction and the ecosystems that support them. The act sets forth a process for determining which species are threatened and endangered and requires the conservation of the critical habitat in which those species live. The ESA provides broad protection for species of fish, wildlife, and plants that are listed as threatened or endangered. Provisions are made for listing species, as well as for recovery plans and the designation of critical habitat for listed species. The ESA outlines procedures for federal agencies to follow when taking actions that may j eopardize listed s pecies and c ontains exceptions and e xemptions. It is the enabling legislation for the C onvention on International Trade in Endangered Species of Wild F auna and F lora. Criminal and civil penalties are provided for violations of the ESA and the Convention.

Federal agencies must seek to conserve endangered and threatened species and use their authorities in furtherance of the ESA's purposes. The ESA defines three fundamental terms:

- **Endangered** means that a species of fish, animal, or plant is "in danger of extinction throughout all or a significant portion of its range." For salmon and other vertebrate species, this may include subspecies and distinct population segments.
- **Threatened** means that a species "is likely to become endangered within the foreseeable future." Regulations may be less restrictive for threatened species than for endangered species.
- **Critical habitat** means "specific geographical areas that are...essential for the conservation and management of a listed species, whether occupied by the species or not."

Five sections of the ESA are of critical importance to understanding the act:

- Section 4: Listing of a Species—NOAA's Fisheries Service is responsible for listing marine species; the U.S. Fish and Wildlife Service is responsible for listing terrestrial and freshwater aquatic species. The agencies may initiate reviews for listings, or citizens may petition for them. A listing must be made "solely on the basis of the best scientific and commercial data available." After a listing has been proposed, agencies receive comment and conduct further scientific reviews for 12 to 18 months, after which they must decide if the listing is warranted. Economic impacts cannot be considered in this decision, but it may include an evaluation of the adequacy of local and state protections. Critical habitat for the species may be designated at the time of listing.
- Section 7: Consultation—Federal agencies must ensure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of a listed or proposed species or adversely modify its critical habitat. This includes private and public actions that require a federal permit. Once a final listing is made, non-federal actions are subject to the same review, termed a "consultation." If the listing agency finds that an action will "take" a species, it must propose mitigations or "reasonable and prudent" alternatives to the action; if the proponent rejects these, the action cannot proceed.

- Section 9: Prohibition of Take—It is unlawful to "take" an endangered species, including killing or injuring it or modifying its habitat in a way that interferes with essential behavioral patterns, including breeding, feeding, or sheltering.
- Section 10: Permitted Take—Through voluntary agreements with the federal government that provide protections to an endangered species, a non-federal applicant may commit a take that would otherwise be prohibited as long as it is incidental to an otherwise lawful activity (such as developing l and o r bui lding a r oad). T hese a greements of ten t ake t he f orm of a "Habitat Conservation Plan."
- Section 11: Citizen Lawsuits—Civil actions initiated by any citizen can require the listing agency to enforce the ESA's prohibition of taking or to meet the requirements of the consultation process.

Clean Water Act

The federal Clean Water Act (CWA) employs regulatory and non-regulatory tools to reduce direct pollutant discharges into waterways, finance municipal wastewater treatment facilities, and manage polluted runoff. These tools are employed to achieve the broader goal of restoring and maintaining the chemical, physical, and b iological integrity of t he na tion's surface waters so that they c an support " the p rotection a nd propagation of fish, shellfish, and wildlife and recreation in and on the water."

Evolution of CWA programs over the last decade has included a shift from a program-by-program, sourceby-source, and pollutant-by-pollutant a pproach t o m ore ho listic w atershed-based st rategies. U nder t he watershed approach, equal emphasis is placed on protecting healthy waters and restoring impaired ones. A full array of issues are addressed, not just those subject to CWA regulatory authority. Involvement of stakeholder groups in the development and implementation of strategies for a chieving and maintaining water quality and other environmental goals is a hallmark of this approach.

National Flood Insurance Program

The National Flood Insurance Program (NFIP) provides federally backed flood insurance in exchange for communities enacting floodplain regulations. Participation and good standing under NFIP are prerequisites to grant funding eligibility under the Robert T. Stafford Act. Lee County and the Cities of Giddings and Lexington participate in the NFIP and have adopted regulations that meet the NFIP requirements. At the time of the preparation of this plan, Lee County and the Cities of Giddings and Lexington were in good standing with NFIP requirements.

6.9.2 State and Regional

Texas Division of Emergency Management

The TDEM is a division within the Texas Department of Public Safety and has its roots in the civil defense programs established during World War II. It became a separate organization through the Texas Civil Protection Act of 1951, which established the Division of Defense and Disaster Relief in the Governor's Office t o h andle civil d efense and d isaster r esponse p rograms. The division was c ollocated with the Department of Public Safety (DPS) in 1963. The division was renamed the Division of Disaster Emergency Services in 1973. After several more name changes, it was designated an operating division of the Texas Department of Public Safety in 2005. Legislation passed during the 81st session of the Texas Legislature in 2009 formally changed the name to TDEM. TDEM operates according to the Texas Disaster Act of 1975 (Chapter 418 of the Texas Government Code).

TDEM is "charged with carrying out a comprehensive all-hazard emergency management program for the state and for assisting cities, counties, and state agencies in planning and implementing their emergency management programs. A comprehensive emergency management program includes pre- and post-disaster mitigation of known hazards to reduce their impact; preparedness activities, such as emergency planning,

training, and exercises; provisions for effective response to emergency situations; and recovery programs for major disasters."

Texas Water Development Board

The Texas Water Development Board (TWDB) was created in 1957 but its history dates back to a 1904 constitutional amendment authorizing the first public development of water resources. The TWDB mission is "to pr ovide l eadership, information, e ducation, and s upport f or p lanning, f inancial a ssistance, a nd outreach for the conservation and responsible development of water for Texas." TWDB provides water planning, data collection and dissemination, financial assistance, and technical assistance services.

TWDB financial assistance programs are funded through state-backed bonds, a combination of state bond proceeds and federal grant funds, or limited appropriated funds. Since 1957, the Texas State Legislature and voters approved constitutional amendments authorizing TWDB to issue up to \$10.93 billion in Texas Water Development Bonds. To date, TWDB has sold nearly \$3.95 billion of these bonds to finance the construction of water- and wastewater-related p rojects. In 1987, TWDB ad ded the C lean Water S tate Revolving Fund (CWSRF) to its portfolio of financial assistance programs. Low-interest loans from the CWSRF finance costs associated with the planning, design, construction, expansion, or improvement of wastewater treatment facilities, wastewater recycling and reuse facilities, collection systems, stormwater pollution control projects, and nonpoint source pollution control projects. Funded in part by federal grant money, CWSRF provides loans at interest rates lower than the market can offer to any eligible applicant. CWSRF offers 20-year loans using either a traditional long-term, fixed-rate or a short-term, variable-rate construction period loan that converts to a long-term, fixed-rate loan on project completion.

Texas Soil and Water Conservation Board

The Texas State Soil and Water Conservation Board (TSSWCB) is the state agency that administers Texas' soil a nd w ater c onservation l aw a nd c oordinates c onservation and non point s ource w ater p ollution abatement programs. The TSSWCB was created in 1939 by the Texas Legislature to organize the state into 216 soil and water conservation districts (SWCD) and to serve as a centralized agency for communicating with the Texas Legislature as well as other state and federal entities. The TSSWCB is the lead state agency for the planning, management, and abatement of agricultural and silvicultural (forestry) nonpoint source water pollution, and administers the Water Supply Enhancement Program. Each SWCD is an independent political subdivision of state government. Local SWCDs are actively involved throughout the state in soil and water conservation activities such as operation and maintenance of flood control structures.

Texas Bureau of Economic Geology

The University of Texas at Austin, Bureau of Economic Geology serves as the State Geological Survey of Texas. The bureau conducts research focusing on the intersection of energy, environment, and economy. The bureau partners with federal, s tate, and local agencies, academic institutions, industry, nonprofit organizations, and foundations to c onduct h igh-quality r esearch and to d isseminate the r esults t o the scientific and engineering communities as well as to the broad public. The Geophysical Log Facility (GLF) is the official well log repository for the Railroad Commission of Texas, which by law receives a copy of geophysical logs from every new, deepened, or plugged well drilled in Texas since September 1985.

Texas Forest Service

Texas Forest Service (TFS) was created in 1915 by the 34th Legislature as an integral part of the Texas A&M University System. It is mandated by law to assume direction of all forest interests and all matters pertaining to forestry within the jurisdiction of the state. TFS a dministers the C ommunity W ildfire Protection Plan (CWPP) to reduce related risks to life, property, and the environment. Its Fire Control Department provides leadership in wildland fire protection for state and private lands in Texas and reduces wildfire-related loss of life, property, and critical resources.

The intention of the TFS CWPP is to reduce the risk of wildfire and promote ecosystem health. The plan also is intended to reduce home losses and provide for the safety of residents and firefighters during wildfires. It has the following goals and objectives.

Goals:

- Provide for the safety of residents and emergency personnel
- Limit the number of homes destroyed by wildfire
- Promote and maintain healthy ecosystems
- Educate citizens about wildfire prevention

Objectives:

- Complete wildfire risk assessments
- Identify strategic fuels reduction projects
- Address treatment of structural ignitability
- Identify local capacity building and training needs
- Promote wildfire awareness programs

CWPPs are developed to mitigate losses from wildfires. By developing a CWPP, a community is outlining a strategic plan to mitigate, prepare, respond, and recover.

Texas Department of State Health Services

The mission of the Department of State Health Services is to protect and preserve the health of the citizens of T exas. Public h ealth nurses p rovide a v ariety of s ervices including im munizations, preventive assessments of children and the elderly, and a full range of services designed to assist individuals and groups to attain and maintain good health and to cope with illnesses.

Texas Colorado River Floodplain Coalition

The TCRFC is a partnership of cities and counties in the Colorado River Basin and surrounding a reas seeking better ways to reduce and mitigate flood damage. The coalition was formed in response to a combination of rapid growth, a greatly expanded number of homes and businesses in the floodplain, and devastating floods t hat have r eoccurred in the basin. TCRFC's mission statement is to: "Encourage comprehensive consistent management of the floodplain a long the Colorado River and its tributaries; provide a forum for data exchange; and facilitate a structured approach to managing the complex issues related to floodplain management." TCRFC is the sponsoring agency for the development of this hazard mitigation plan to address all natural hazards that could potentially affect communities.

Capital Region Council of Governments

For more than 40 years, the Capital Region Council of Governments (CAPCOG) has served as an advocate, planner, and c oordinator on important r egional issues in the ten-county A ustin m etropolitan a rea. The CAPCOG includes the following counties: Bastrop, Blanco, Burnet, Caldwell, Fayette, Hays, Lee, Llano, Travis, a nd W illiamson. C APCOG c ounts a c onstituency of m ore t han 90 m ember governments a nd organizations including cities, counties, school and appraisal districts, utilities, chambers of commerce and others. Services and programs range from economic development, emergency communications and elderly assistance t o law enforcement training, criminal justice planning, s olid w aste reduction, a nd hom eland security planning.

The Regional Services Division focuses on initiatives and programs related to mapping, air quality planning and m onitoring, s olid w aste planning, a nd r ural transportation. The division includes C APCOG's

Community & E conomic D evelopment P rogram. The d ivision w orks c losely w ith cities, counties, chambers of c ommerce, and e conomic de velopment c orporations. It a lso m anages the U.S. E conomic Development A dministration-funded R egional S ervices Capital A rea E conomic D evelopment D istrict, which establishes regional economic development priorities.

CAPCOG's Emergency Communications Division provides planning, technical, implementation, training and public education assistance to public safety agencies throughout the ten-county region, helping them deliver high-quality 911 service to their communities. The division works with local telephone companies, Voice over Internet Protocol providers, county 911 addressing coordinators, and others to ensure each 911 call r eaches the correct p ublic s afety an swering p oint w ith ac curate l ocation and telephone n umber information.

CAPCOG's Homeland S ecurity Division supports local jurisdictions and first responders in building regional strategies for response to natural and man-made disasters, including prioritizing federal homeland security funding, facilitating training and coordinating long-term communications planning. CAPCOG has taken a regional approach to allocating the funding, ensuring both local needs and regional priorities are met. A significant portion of the telecommunications infrastructure that supports local governments— especially public safety personnel—has been funded by CAPCOG-administered Homeland Security Grant Program funding.

6.9.3 Lee County

The Lee County government is made up of the following offices and departments:

- County Judge
- Commissioners' Court
- Attorney
- Clerk
- Treasures
- County Tax Assessor/Collector
- Court of Law
- Constable

- Sheriff
- Justice of the Peace
- County Auditor
- Elections
- 911 Addressing
- Emergency Management
- Permitting and Inspections
- Public Safety

Excerpts from applicable policies, regulations, and plans and program descriptions follow to provide more detail on existing mitigation capabilities.

Lee County Subdivision and Development Regulations, 2003 (as amended)

The 2003 Lee County Subdivision Regulations established rules, regulations, and standards governing the subdivision o f1 and w ithin t he un incorporated a reas of L ee C ounty. It est ablished standards and specifications for construction of roads and drainage, private sewage facilities, and development within the floodplain. The S ubdivision R egulations were de signed and e nacted for the purpose of promoting the health, safety, and general welfare of the public and to establish standards of subdivision design, which will encourage the development of sound, economical, stable neighborhoods and create a healthy environment for present and future inhabitants of Lee County by:

- Detailing platting requirements, lot sizes, and setbacks
- Detailing requirements and design standards, for water, wastewater, streets, and utilities
- Detailing acceptable impacts and drainage requirements
- Detailing administrative responsibilities

The regulations also include procedures for variances, enforcement, and penalties.

Lee County's Flood Damage Prevention Order, 2013

The F lood D amage P revention O rder s igned on N ovember 25, 2013 , established t he L ee C ounty Commissioners' Court as the governing body to administer the National Flood Insurance Act and Texas Flood Control and Insurance Act. The purpose of the order and attached regulations is to promote the public health, safety, and general welfare and to minimize public and private losses due to flood conditions in specific areas by regulations designed to: (1) protect human life and health; (2) minimize the expenditure of public money for c ostly flood c ontrol projects; (3) minimize the ne ed for rescue and r elief efforts associated with flooding a nd us ually unde rtaken a t public e xpense; (4) minimize prolonged business interruptions; (5) minimize damage to public facilities and utilities such as water and gas mains, electric, telephone and sewer lines, and streets and bridges located in or near floodplains; (6) help maintain a stable tax base by providing for the sound use and development of flood-prone areas in such a m anner as to minimize future flood blight areas; and (7) insure that potential buyers are notified that property is in a flood area.

The order will be implemented through methods authorized by federal and state law to: (1) restrict or prohibit uses that are dangerous to health, safety, or property in times of flood, or uses that cause excessive increases in flood heights or velocities; (2) require that uses vulnerable to floods, including facilities which serve such uses, be protected against flood damage at the time of initial construction; (3) control the alteration of natural floodplains, stream channels, watercourses, and natural protective barriers which are involved i n t he a commodation of flood w aters; (4) c ontrol f illing, g rading, dr edging, a nd ot her development which may increase flood damage; and (5) prevent or regulate the construction of flood barriers which will unnaturally divert flood waters or which may increase flood hazards to other lands.

The responsibilities of the Commissioners' Court are to: (1) fulfill an obligation mandated by federal and state law; (2) regulate construction in an area designated under law as a floodplain; (3) regulate sewer and on-site sewage/sewer facilities (OSSF); (4) prevent waste; (5) protect the rights of owners of interests in groundwater; (6) prevent subsidence; (7) provide a response to a real and substantial threat to public health and safety, said response being designed to significantly advance the public purposes herein described and not to impose a greater burden than is necessary to achieve said purposes; and (8) prevent the imminent destruction of property or injury to persons from flooding within a floodplain established by a federal flood control program and enacted to prevent the flooding of buildings intended for public occupancy.

Lee County Floodplain Map

The new floodplain maps from FEMA are already in use for issuing permits and went into effect on April 16, 2014.

Lee County Basic Emergency Operations Plan

The purpose of the Lee County Emergency Operations Plan (EOP) is to:

- Identify the roles, responsibilities and actions required of county departments and other agencies in preparing for and responding to major emergencies and disasters.
- Ensure a c oordinated response by local, state, and federal governments by the use of National Incident Management System (NIMS) in managing emergencies or disasters; to save lives, prevent injuries, protect property and the environment, and to return the affected area to a state of normalcy as quickly as possible.
- Provide a framework f or coordinating, i ntegrating, a nd a dministering t he EOPs and r elated programs of local, state, and federal governments.

• Provide f or the integration and c oordination of volunteer ag encies and p rivate o rganizations involved in emergency response and relief efforts.

The EO P uses the all-hazard approach a ddressing a full range of c omplex and c onstantly c hanging requirements in anticipation of or in response to threats or acts of major disasters (natural or technological), terrorism, and other emergencies. It provides general guidance for emergency management activities and an overview of methods of mitigation, preparedness, response, and recovery. The EOP does not specifically address long-term reconstruction, redevelopment, and mitigation measures. The EOP details the specific incident m anagement r oles a nd responsibilities of departments and a gencies i nvolved i n emergency management. This plan also helps establish coordination roles of the county departments and agencies and local jurisdictions. The EOP was designed to address hazards such as flooding, tornadoes, wildfires, severe weather, h urricane, drought, e arthquake, da m f ailure, a nd h azardous m aterials. The E OP i ncludes 22 functions a nnexes t o provide f unctions and identify r esponsibilities for e ach time of i ncident a nd the necessary support elements that may be required.

Lee County Office of Emergency Management

The E mergency Man agement C oordinator p rovides ser vices county-wide to pr epare a nd pl an f or emergencies in Lee County and the Cities of Giddings and Lexington. Both Giddings and Lexington also have local emergency management co ordinators. C ommunication is maintained with s tate and f ederal agencies for coordination in the event of large disasters, natural or manmade.

Lee County Permitting Department

The L ee C ounty P ermitting D epartment is a s ervice, information, a nd p latting a uthority in the unincorporated areas of Lee County. The department provides information regarding the Lee County zoning resolution, subdivision regulations, a nd F EMA F IRMs f or L ee C ounty. A s of June 23, 2014, all development located in the unincorporated areas of Lee C ounty m ust be permitted. This includes all residential, commercial and oil/gas pipeline development. The department on ly r equires permits f or agricultural structures such as barns, sheds, etc. if they fall within the floodplain.

The mission of the permitting department is to help protect the citizens of Lee County by establishing and enforcing minimum building requirements to reduce the potential hazards of unsafe construction, to assist the general public with the application and permit process, and to conduct the department's business in a timely, efficient, and professional manner. The department only regulates building within designated flood plains. U nless organized as a municipality, a ll l and ar ea w ithin t he L ee C ounty i s d esignated as unincorporated and is not governed by county-specific building codes.

Lee County Emergency Medical Service

There are two ambulance services in Lee County but no hos pitals. The north side of the county us es Richard's Memorial Hospital in Rockdale, Texas and the south side uses St. Mark's Medical Center in La Grange.

Lee County Commissioners' Court

The L ee C ounty C ommissioners' Court is r esponsible f or t he m aintenance and c onstruction of t hose roadway and drainage structure assets maintained through the direct and indirect efforts of Lee County.

6.9.4 City of Giddings

The City of Giddings government is made up of the following offices and departments:

• Utilities/Billing

• Public Library & Cultural Center

• Municipal Court

• Country Club & Golf Course

- Code Compliance
- Animal Shelter
- Police Department
- Volunteer Fire Department

- Parks, Pool, & Cemetery
- Water & Sewer Departments
- Giddings/Lee County Airport
- City Secretary

The City of Giddings has multiple plans and functions in place that guide growth and development within the community. The city also has an Economic Development Council. Excerpts from applicable policies, regulations, and p lans and pr ogram de scriptions follow t o p rovide m ore d etail on e xisting m itigation capabilities.

City of Giddings Master Plan, 2010

The *City of Giddings Master Plan* was originally developed by the Department of Landscape Architecture & Urban Planning at Texas A&M University in 1996 and last updated in 2010. The plan addresses the street inventory, land usage, zoning, parks, water/wastewater services, electrical grid, and other c ity infrastructure. Part II of the plan discusses the goals and objectives associated with environment; economic development; land use; transportation; historic preservation; infrastructure; housing; and city services. The plan calls for actions to increase density with desirable development using the city's existing footprint as infrastructure already has been developed. Action items from 1996 to 2010 are included in the master plan.

City of Giddings Code of Ordinances

Some of the chapters in the Giddings Code of Ordinances have provisions related, directly or indirectly, to hazard mitigation. These provisions are discussed below:

Chapter 1 - General Provisions

Provisions under this chapter include:

- Establishment o f t he C ity o f G iddings E mergency Man agement O rganization (Sec. 1.05.001)
- Identification of the powers, duties, and responsibilities of the Emergency Management Director (Sec. 1.05.003)
- Requirement to develop and maintain an EOP (Sec. 1.05.003)
- Authorized to join with the county judge and mayors of the other cities in the county in the formation of an inter-jurisdictional emergency management program (Sec 1.05.004)
- Establishes r ules, r egulations and p rocedures f or c ity p arks i ncluding l and use and prohibiting fireworks (Sec. 1.10.064)
- Establishes the joint airport zoning board with Lee County (Sec. 1.11.031)

• Chapter 3 - Building Regulations

Provisions under this chapter include:

- Adoption of the International Building Code, 2009 edition (Sec. 3.03.001, Ordinance 657 adopted 8/1/11)
- Adoption of the International Electrical Code, 2014 edition (Sec. 3.04.031, Ordinance 704 adopted 8/11/14
- Description of enforcement, a uthorization, and purpose of the Standard for Floodplain Management in the City of Giddings (Sec. 3.14.003)

- Methods of reducing flood losses (Sec. 3.14.004)
- Basis for establishing the areas of special flood hazard and permitting requirements (Sec. 3.14.007)
- Designation, duties, and responsibilities of the floodplain administrator (Sec. 3.14.041)
- Permit and variance procedures for a floodplain development permit (Sec. 3.14.043 and 044)
- Construction standards for new construction and substantial improvements to minimize flood damage (Sec. 3.14.072)
- Standards for subdivision (Sec. 3.14.073, 1996 Code, sec. 9-19)
- Penalties for non-compliance (Sec. 3.14.075, Ordinance 691 adopted 12/9/13)

• Chapter 5 - Fire Protection and Prevention

Provisions under this chapter include:

- Establishment and staffing for the volunteer fire department (1999 Code, sec. 31.02)
- Establishes the City Fire Marshal, roles and responsibilities (1999 Code, sec. 31.20)
- Adoption of the International Fire Code, 2009 edition (Ordinance 682 adopted 5/6/13)
- Regulations on the use, possession, and sale of fireworks (1999 Code, sec. 92.15)
- Restrictions on burning (Ordinance 680 adopted 3/5/13)

• Chapter 10 - Subdivision

Provisions under this chapter include:

- Manage the orderly, safe and healthful development to promote the health, safety and general welfare of the community (Ordinance 600 adopted 2/5/07)
- Land development and division restrictions (Ordinance 600 adopted 2/5/07)
- Establishes rules, regulations, and standards governing the subdivision of land within the City of Giddings for the City Manager and Planning and Zoning Commission (Ordinance 600 adopted 2/5/07)
- Processes for the replatting of subdivided or re-subdivided land (Ordinance 600 adopted 2/5/07)

• Chapter 14 - Zoning

Provisions under this chapter include:

- Established zoning regulations and establishes zoning districts within the City of Giddings (1999 Code, sec. 153.040)
- Establishes the roles, responsibilities, and authority of the City Planning Commission (1999 Code, sec. 153.022)
- Establishes r egulations, p lans and p rocedures, and r eview process f or approval o f construction projects within the city (1999 Code, sec. 153.024)

City of Giddings Emergency Management

The Lee County Emergency Management Coordinator is the principal emergency operations agent for Lee County. The Giddings Mayor serves as the Emergency Management Director and the Code Compliance

Officer serves as the emergency management coordinator. Emergency operations for both the county and the city will be coordinated and conducted, primarily, from the Lee County Emergency Operation Center. The city has adopted the county's EOP as their own.

City of Giddings Planning and Zoning Commission

The Planning and Zoning Commission was established in accordance with Ordinance 600 adopted 2/5/07. The Planning and Zoning Commission has the following responsibilities:

- Responsibility for the preparation and maintenance of the city's comprehensive plan
- Serve in an advisory capacity on matters concerning amendments to this article's text or map, on matters concerning the granting or denial of conditional use permits
- Review, and approval or rejection of subdivision plats

City of Giddings Land Use Management Ordinance

The City of Giddings has adopted resolutions and ordinances that directly or indirectly mitigate hazards identified in this plan. The City of Giddings Zoning Ordinances establish an adopted comprehensive plan for the purpose of promoting the public health, safety, morals and general welfare, and protecting and preserving places and areas of historical, cultural and/or architectural importance and significance within the City of Giddings. They have been designed to lessen the congestion in the streets; secure safety from fire, panic and other dangers; ensure adequate light and air; prevent the overcrowding of land and thus avoid undue concentration of p opulation; a nd f acilitate the a dequate pr ovision of t ransportation, w ater, wastewater treatment, schools, parks and other public requirements. The rules have be en made with reasonable consideration, among other things, for the character of each zone and its particular suitability for the uses specified; and with a view to conserving the value of buildings and attributes and to encouraging the most appropriate use of land throughout the city.

City of Giddings Economic Development Council

The Giddings Economic Development Corporation (GEDC) serves the local business community and those seeking to expand or locate into the area. The GEDC administers the City of Giddings' half-cent 4-B sales tax revenues–approved by voters in 1996–for economic and community development. Eligible activities for receipt of these funds are outlined in the proposition section of the city ordinance authorizing the creation of the GEDC. The GEDC owns and manages the 170-acre Giddings 290 Business Park, and the Giddings R ailroad Depot and the Union S tation Transportation Museum, and administers the vacant buildings and the business development incentives programs. The GEDC is managed by a board of directors appointed by the Giddings City Council.

6.9.5 City of Lexington

The City of Lexington government is made up of the following offices and departments:

- City Administration
- Code Enforcement
- Fire and Emergency Medical Services Department
- Police Department
 - Public Works Department
- Utility Services

• Municipal Court

The City of Lexington has multiple plans and functions in place that guide growth and development within the community. Excerpts from applicable policies, regulations, and plans and program descriptions follow to provide more detail on existing mitigation capabilities.

City of Lexington Master Plan, 2002

The *City of Lexington Master Plan* was last updated in 2002. The plan addresses the street inventory, land usage, zoning, parks, water/wastewater services, electrical grid, and other city infrastructure. While the plan exist, few actions have been implemented.

City of Lexington Code of Ordinances

Some of the chapters in the Lexington, Texas Code of Ordinances have provisions related, directly or indirectly, to hazard mitigation. The code reviewed was amended through May 2015 and adopted on June 10, 2015.

• Chapter 2 - General Provisions

Provisions under this chapter include:

- Establishment of the City of Lexington Police Department Organization
- Establishment of the City of Lexington Fire Department Organization
- Establishment of the City of Lexington Emergency Management Organization

• Chapter 22 - Building Regulations

Provisions under this chapter include:

- Adoption of the International Building Code, 2012 edition

• Chapter 38 - Civil Emergencies

Provisions under this chapter include:

- Identification of the powers, duties, and responsibilities of the Emergency Management Director
- Requirement to develop and maintain an EOP
- Authorized to join with the county judge and mayors of the other cities in the county for the formation of an inter-jurisdictional emergency management program

• Chapter 46 - Fire Protection and Prevention

Provisions under this chapter include:

- Adoption of the International Fire Code, 2012 edition
- Establishment and staffing for the Bureau of Fire Prevention and the Fire Marshal
- Regulations on the use, possession, and sale of fireworks
- Restrictions on burning

Chapter 65 - Subdivision

Provisions under this chapter include:

- The purpose of the subdivision regulations and establishes established rules, regulations, and standards governing the subdivision of land within the city.
- Establishment of standards and specifications for construction of roads and drainage, private sewage facilities, and development within the floodplain.

City of Lexington Emergency Management

The P olice C hief is the p rincipal e mergency operations a gent for the C ity of L exington. E mergency operations for the city will be coordinated and conducted, primarily, from the local emergency operation center. In response to an emergency situation and pursuant to state law, the Mayor of Lexington or the Lee County judge, as c hief elected officials, or the C ity C ouncil or the C ommissioners' Court, as elected governing b odies, have the authority to request that the governor issue an Emergency Declaration or a Disaster Declaration for the city or a part thereof. The Mayor of Lexington and/or the Lee County judge have the authority to issue evacuation orders for all or part of the City of Lexington. On-site response operations to an emergency will be conducted in accordance with the provisions of NIMS.

Lexington Economic Development Corporation

The Lexington Economic Development Corporation was created to:

- Organize, implement and manage an economic development program for the greater Lexington area
- Promote the economic well-being of its citizens
- Retain and create jobs and support tourism and commerce

Funding from sales tax is used and applied to parks and park facilities, ball parks, museums, library/learning centers municipal buildings, convention center, ot her related facilities including the development and maintenance of municipal and public facilities, tourism, open-space improvements, and the promotion and development of new or expanded business enterprises, related area transportation facilities and related roads, streets and electric, water and wastewater, wastewater treatment, and sewer facilities and other related items that enhance any of those items including the maintenance and operating costs of any such projects mentioned above.

CHAPTER 7. HAZARD MITIGATION CAPABILITIES ASSESSMENT

The planning team performed an inventory and analysis of existing authorities and capabilities called a "capability assessment." A capability assessment creates an inventory of an agency's mission, programs and policies, and evaluates its capacity to carry them out. The county and the participating municipalities used this capabilities assessment to identify mitigation actions to strengthen their ability to mitigate the effects of a natural hazard.

7.1 LEE COUNTY

7.1.1 Legal and Regulatory Capabilities

Table 7-1 lists planning and land management tools typically used by local jurisdictions to implement hazard mitigation activities and indicates those that are in place in Lee County.

TABLE 7-1. LEE COUNTY REGULATORY MITIGATION CAPABILITIES MATRIX			
Regulatory Tool (ordinances, codes, plans)	Yes/No	Comments	
General plan	No		
Zoning ordinance	No		
Subdivision ordinance	Yes	The Lee County Subdivision Regulations (2003, as amended) established rules, regulations and standards governing the subdivision of land within the unincorporated areas of Lee County.	
Growth management	Yes	Growth management is accomplished through compliance with the Lee County Subdivision ordinance and the new permitting requirements for all development located in the unincorporated areas of Lee County must be permitted. This includes all residential, commercial and oil/gas pipeline development.	
Floodplain ordinance	Yes	Lee County Flood Prevention Order, 2013 as amended.	
Other special purpose ordinance (stormwater, steep slope, wildfire)	No		
Building code	No	Lee County Permitting Department does not enforce the State of Texas Building codes.	
Erosion or sediment control program	No		
Stormwater management	No		
Site plan review requirements	Yes	Lee County Permitting Department	
Capital improvement plan	Yes	The capital improvement fund is limited to county-owned infrastructure.	

TABLE 7-1. LEE COUNTY REGULATORY MITIGATION CAPABILITIES MATRIX					
Regulatory Tool (ordinances, codes, plans)	Yes/No	Comments			
Economic development plan	No				
Local emergency operations plan	Yes	Lee County Basic Emergency Operations Plan			
Other special plans	No				
Flood insurance study or other engineering study for streams	Yes	The County Judge is the local repository for the FEMA FIRM for the unincorporated areas of the county and makes the maps available for public review. The department maintains flood insurance rate maps in conjunction with the NFIP. The new floodplain maps went into effect on April 2014.			
Elevation certificates	Yes	The County Judge keeps records of flood elevation certificates on file in its office.			
Notes:					
FEMA Federal Emergency N	FEMA Federal Emergency Management Agency				
FIRM Flood Insurance Rate	FIRM Flood Insurance Rate Map				
NFIP National Flood Insurance Program					

7.1.2 Administrative and Technical Capabilities

Table 7-2 identifies the county personnel responsible for activities related to mitigation and loss prevention in Lee County.

TABLE 7-2. LEE COUNTY ADMINISTRATIVE/TECHNICAL MITIGATION CAPABILITIES MATRIX				
Personnel Resources	Yes/No	Department/Position		
Planner/engineer with knowledge of land development/land management practices	No			
Engineer/professional trained in construction practices related to buildings or infrastructure	No			
Planner/engineer/scientist with an understanding of natural hazards	No			
Personnel skilled in GIS	Limited	The county has mapped the 911 addressing in conjunction with the CAPCOG.		
Full-time building official	No	The county has proposed to hire a Permitting Coordinator in late 2015.		
Floodplain manager	Yes	Permitting Department		
Emergency manager	Yes	Emergency Management Coordinator		
Grant writer	Yes	The Permitting Department applies and administers most county grants except those managed by the local fire departments.		

TABLE 7-2. LEE COUNTY ADMINISTRATIVE/TECHNICAL MITIGATION CAPABILITIES MATRIX				
Personnel Resources	Yes/No	Department/Position		
Other personnel	No			
GIS data: Hazard areas	No			
GIS data: Critical facilities	No			
GIS data: Building footprints	No			
GIS data: Land use	No			
GIS data: Links to Assessor's data	No			
Warning systems/services (Reverse 911 callback, cable override, outdoor warning signals)	Yes	The County uses the Emergency Notification System and Reverse 911 Notification Systems.		
Other	No			
Notes:				
CAPCOG Capital Area Council of Govern	ments			
GIS Geographic Information System				

7.1.3 Financial Capabilities

Table 7-3 identifies financial tools or resources that Lee County could use to help fund mitigation activities.

TABLE 7-3. LEE COUNTY FINANCIAL MITIGATION CAPABILITIES MATRIX				
Financial Resources Accessible/Eligible to Us				
Community Development Block Grants	No			
Capital improvements project funding	Yes			
Authority to levy taxes for specific purposes	Yes			
Fees for water, sewer, gas, or electric services	No			
Impact fees for new development	Yes			
Incur debt through general obligation bonds	Yes			
Incur debt through special tax bonds	Yes			
Incur debt through private activities	No			
Withhold spending in hazard prone areas	No			
Other	No			

7.2 CITY OF GIDDINGS

7.2.1 Legal and Regulatory Capabilities

Table 7-4 lists regulatory and planning tools typically used by local jurisdictions to implement hazard mitigation activities and indicates those that are in place in the City of Giddings.

TABLE 7-4. CITY OF GIDDINGS REGULATORY MITIGATION CAPABILITIES MATRIX

Regulatory Tool (ordinances, codes, plans)	Yes/No	Comments
General plan	No	Horizon 2010, A Plan for Giddings
Zoning ordinance	Yes	City of Giddings Code of Ordinance - Zoning (1999, as amended)
Subdivision ordinance	Yes	Subdivision regulations are included in the City of Giddings Zoning Code, Chapter 10 (2007, as amended)
Growth management	No	Growth management is included in the Comprehensive Plan and managed through compliance the Subdivision regulations are included in the City of Giddings Zoning Code.
Floodplain ordinance	Yes	Adopted the Standard for Floodplain Management (2007)
Other special purpose ordinance (stormwater, steep slope, wildfire)	No	
Building code	Yes	The City of Giddings adopted the International Building Code and International Residential Code (2009 editions)
Erosion or sediment control program	No	LCRA administers the erosion and sediment control program.
Stormwater management	No	LCRA administers the stormwater management control program.
Site plan review requirements	Yes	Site plan review requirements are listed in Section 153 of the City of Giddings Zoning Code (1999, as amended).
Capital improvements plan	No	
Economic development plan	No	The Giddings Economic Development Council is a separate entity with taxing authority.
Local emergency operations plan	No	The City of Giddings works in conjunction with the Lee County Emergency Management and adopted the county EOP as their own.
Other special plans	No	
Flood insurance study or other engineering study for streams	Yes	FEMA floodplain maps indicate flood insurance is required along Cummings Creek.
Elevation certificates	No	The city has not have any certificates submitted. Several pre-existing structures are located within the Cummings Creek floodplain. The Commissioners' Court of Lee County also keeps records of flood elevation certificates on file in its office.
Notes:EOPEmergency OperationFEMAFederal Emergency MLCRALower Colorado Rive	lanagement A	Agency

7.2.2 Administrative and Technical Capabilities

Table 7-5 identifies the city personnel responsible for activities related to mitigation and loss prevention in the City of Giddings.

TABLE 7-5. CITY OF GIDDINGS ADMINISTRATIVE/TECHNICAL MITIGATION CAPABILITIES MATRIX					
Personnel Resources	Yes/No	Department/Position			
Planner/engineer with knowledge of land development/land management practices	No	When necessary, the city contracts services to an external civil engineer.			
Engineer/professional trained in construction practices related to buildings or infrastructure	No	When necessary, the city contracts services to an external civil engineer.			
Planner/engineer/scientist with an understanding of natural hazards	Yes	The Code Compliance Officer serves as the Floodplain Manager.			
Personnel skilled in GIS	No				
Full-time building official	Yes	Code Compliance Officer			
Floodplain manager	Yes	Code Compliance Officer			
Emergency manager	Yes	Mayor and Code Compliance Officer. The city also works in conjunction with the Lee County Emergency Manager.			
Grant writer	No	Grant writing services are contracted as needed.			
Other personnel	No				
GIS data: Hazard areas	No				
GIS data: Critical facilities	No				
GIS data: Building footprints	No				
GIS data: Land use	No				
GIS data: Links to Assessor's data	No				
Warning systems/services (Reverse 911 callback, cable override, outdoor warning signals)	Yes	Giddings is a participant in the CAPCOG's Code Red 911-based emergency phone notifications system.			
Other	No				
Notes:CAPCOGCapital Area Council of GovernmGISGeographic Information System	ents				

7.2.3 Financial Capabilities

Table 7-6 identifies financial tools or resources that the City of Giddings could use to help fund mitigation activities.

TABLE 7-6. CITY OF GIDDINGS FINANCIAL MITIGATION CAPABILITIES MATRIX				
Financial Resources Accessible/Eligible to Use (Yes				
Community Development Block Grants	Yes			
Capital improvements project funding	Yes			
Authority to levy taxes for specific purposes	Yes			
Fees for water, sewer, gas, or electric services	Yes (water, wastewater, and electric)			
Impact fees for new development	Yes			
Incur debt through general obligation bonds	Yes			
Incur debt through special tax bonds	Yes			
Incur debt through private activities	No			
Withhold spending in hazard prone areas	No			
Other	No			

7.3 CITY OF LEXINGTON

7.3.1 Legal and Regulatory Capabilities

Table 7-7 lists planning and land management tools typically used by local jurisdictions to implement hazard mitigation activities and indicates those that are in place in the City of Lexington.

TABLE 7-7. CITY OF LEXINGTON REGULATORY MITIGATION CAPABILITIES MATRIX				
Regulatory Tool (ordinances, codes, plans)	Yes/No	Comments		
General plan	Yes	A Comprehensive Plan was developed in 2002 but recommended actions have not been implemented.		
Zoning ordinance	No			
Subdivision ordinance	Yes	Subdivision regulations are included in Chapter 65, Subdivision of Land.		
Growth management	Yes	Growth management is accomplished through compliance the subdivision regulations are included in the city code, the issuance of permits on new buildings and mobile homes, and plat management.		
Floodplain ordinance	Yes	Adopted within Chapter 65, Subdivision of Land.		
Other special purpose ordinance (stormwater, steep slope, wildfire)	No			
Building code	Yes	The City of Lexington adopted the International Building Code and International Residential Code (2012 editions).		
Erosion or sediment control program	No			
Stormwater management	No			

TABLE 7-7. CITY OF LEXINGTON REGULATORY MITIGATION CAPABILITIES MATRIX

Regulatory Tool (ordinances, codes, plans)	Yes/No	Comments
Site plan review requirements	Yes	Site plan review requirements are managed by the Building Inspector.
Capital improvements plan	No	Capital improvement expenditures are managed as part of the annual budget cycle.
Economic development plan	Yes	The Lexington Economic Development Corporation administers funding according to their plan.
Local emergency operations plan	Yes	The City of Lexington has their own EOP but also works in conjunction with the Lee County Emergency Management Agency under a joint EOP.
Other special plans	No	
Flood insurance study or other engineering study for streams	Yes	FEMA floodplain maps indicate flood insurance is necessary along the Shaw Creek.
Elevation certificates	No	No development has occurred in the floodplain where certificates would be required.
Notes:		
EOP Emergency Operation	ıs Plan	
FEMA Federal Emergency M	lanagement .	Agency

7.3.2 Administrative and Technical Capabilities

Table 7-8 identifies the City of Lexington personnel responsible for activities related to mitigation and loss prevention.

TABLE 7-8. CITY OF LEXINGTON ADMINISTRATIVE/TECHNICAL MITIGATION CAPABILITIES MATRIX					
Personnel Resources	Yes/No	Department/Position			
Planner/engineer with knowledge of land development/land management practices	No	Outsourced to an engineering firm in La Grange as needed.			
Engineer/professional trained in construction practices related to buildings or infrastructure	No	Outsourced to an engineering firm in La Grange as needed.			
Planner/engineer/scientist with an understanding of natural hazards	No	Outsourced to an engineering firm in La Grange as needed.			
Personnel skilled in GIS	No	Lee County manages the GIS for the city.			
Full-time building official	No	Outsourced to the Giddings Building Inspector.			
Floodplain manager	Yes	Police Chief			
Emergency manager	Yes	Emergency Manager Coordinator			
Grant writer	No	Outsourced to Grant Works as needed.			
Other personnel	No				

Personnel Resources	Yes/No	Department/Position
GIS data: Hazard areas	No	
GIS data: Critical facilities	No	
GIS data: Building footprints	No	
GIS data: Land use	No	
GIS data: Links to Assessor's data	No	
Warning systems/services (Reverse 911 callback, cable override, outdoor warning signals)	Yes	The city maintains sirens and a Reverse 911 system
Other	No	

7.3.3 Financial Capabilities

Table 7-9 identifies financial tools or resources that City of Lexington could use to help fund mitigation activities.

TABLE 7-9. CITY OF LEXINGTON FINANCIAL MITIGATION CAPABILITIES MATRIX					
Financial Resources	Accessible/Eligible to Use (Yes/No)				
Community Development Block Grants	Yes				
Capital improvements project funding	Yes				
Authority to levy taxes for specific purposes	Yes				
Fees for water, sewer, gas, or electric services	Yes (water, electric, and sewer)				
Impact fees for new development	Yes (permit and inspection only)				
Incur debt through general obligation bonds	Yes				
Incur debt through special tax bonds	No				
Incur debt through private activities	No				
Withhold spending in hazard prone areas	No				
Other	No				

Lee County Hazard Mitigation Plan Update

PART 2 RISK ASSESSMENT

CHAPTER 8. EXPANSIVE SOILS

EXPANSIVE SOILS RANKING				
Jurisdiction	Expansive Soils			
Lee County	Low			
City of Giddings	Low			
City of Lexington	Low			

8.1 GENERAL BACKGROUND

DEFINITIONS

Expansive Soils — Expansive soils are soils that expand when water is added, and shrink when they dry out. They usually undergo significant volume change with the addition or depletion of pore water. Generally, the result of the chemical structure of certain types of clay soils.

Expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Collapsible soils are a group of soils that can rapidly settle or collapse the ground. They are also known as metastable soils and are unsaturated soils that undergo changes in volume and settlement in response to wetting and drying, often resulting in severe damage to structures. The sudden and usually large volume change could cause considerable structural damage. Expansive soil and rock are characterized by clayey material that shrinks as it dries or swells as it becomes wet. In addition, trees and shrubs placed closely to a structure can lead to soil drying and subsequent shrinkage. The parent (source) rock most associated with expansive soils is shale. Figure 8-1 shows expansive soil distribution in the U.S. Collapsible soils consist of loose, dry, low-density materials that collapse and compact under the addition of water or excessive loading. Soil collapse occurs when the land surface is saturated at depths greater than those reached by typical rain events. This saturation eliminates the clay bonds holding the soil grains together. Similar to expansive soils, collapsible soils result in structural damage such as cracking of the foundation, floors, and walls in response to settlement. Swelling soils cause cracked foundations, as well as damage to upper floors of a building when the motion in the structure is significant. Shrinkage as result of dried soils can remove support from buildings or other structures and result in damaging subsidence. Fissures in the soil can also develop. These fissures can facilitate the deep penetration of water when moist conditions or runoff occurs.

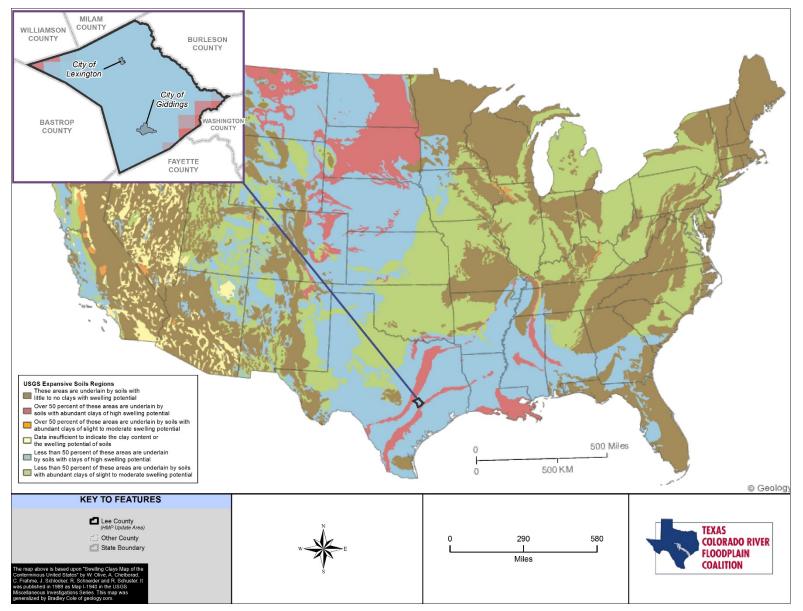


Figure 8-1. Expansive Soil Regions

8.2 HAZARD PROFILE

8.2.1 Past Events

The eastern and western corners of the Lee County Unincorporated Areas are more vulnerable to an event due to over 50% of the area's soil composition of 'High' swelling potential (compared to less than 50% of the area within the rest of the HMP update area being underlain by soils of "High" swelling potential). (Figure 8-1). Expansive soils can cause structural damage, and even though structural foundation issues occur in the HMP update area there is little documentation of site-specific past events from local, state, or national datasets.

Expansive soil is a condition that is native to Lee County and participating communities because of the clay composition of the soils in this region. Expansive soils cannot be documented as a time-specific event, except when it leads to structural and infrastructure damage. There are no specific damage reports or historical records of events in Lee County and participating communities, however future events can occur. See Chapter 8.2.3 below for more information on future events.

8.2.2 Location

Expansive Soils

Structural foundation issues are a known occurrence through this region of South Texas including Lee County and participating communities. The potential vertical rise of the clay soil in the area can be as high as several inches over a drought cycle. Structural foundations in the participating communities are thus subject to cyclical perimeter lifting and lowering from seasonal changes in soil moisture content because of the semi-arid conditions that persist in the area. Figure 8-1 shows the location of expansive soils areas for the participating communities.

8.2.3 Frequency

Expansive soil is a condition that is native to Lee County and participating communities. In Texas, it can take five or more years for an initial moisture dome to stabilize in a foundation. The establishment of the initial moisture dome usually causes the worst of the damage from foundation deflection. Afterward, the foundation is s ubject to c yclic perimeter lifting a nd lowering from s easonal changes in soil moisture content. For example, most homeowners with moving foundations find that cracks widen in the summer and close in the winter because Lee County and participating communities normally get most of its annual rainfall in May and October, summers can be quite dry, and evapotranspiration is less in the winter.

Due to the minimal amount of swelling potential, an event is rare or unlikely (event possible in next 10 years) for the majority of the county (including the cities of Giddings and Lexington). Due to the amount of swelling potential, an events likelihood is considered occasional (event possible in next 5 years) for the eastern and western corners of the county (See Figure 8-1).

Future Events

Land development in the Lee County Unincorporated Areas could lead to an increase in expansive soil events. More structures, residents, and people could cause a strain on previously undeveloped areas of land and resources. This could increase the probability of an event occurring in HMP update area. Future events are considered rare (event possible in next 10 years) for the majority of the county (including the cities of Giddings and Lexington). For the eastern and western corners of the county (See Figure 8-1) future events are considered occasional (event possible in next 5 years).

8.2.4 Severity

The severity of expansive soils are largely related to the extent and location of areas that are impacted. Such events can cause property damage as well as loss of life; however, events may also occur in remote areas of the HMP update area where there is little to no impact to people or property.

Expansive soil is the hidden force behind basement and foundation problems. The U.S. Dept. of Agriculture claims that expansive soils are responsible for more home damage every year than floods, tornadoes and hurricanes combined. The U.S. Dept. of Agriculture estimates 50% of all homes in the U.S. are built on expansive soils. Each year in the U.S., expansive soils cause \$2.3 billion in structural damage. Structures may be condemned as a result of this damage resulting in large losses. Shrink-swell problems are the second most likely problem a homeowner would encounter, after insects.

The *State of Texas Hazard Mitigation Plan* defines soil expansion measurements in terms of its swelling potential or volumetric swell. The State uses the American Society for Testing and Materials (ASTM) soil expansion index adopted by ASTM in 1988. This expansion index has been determined to have a greater range and better sensitivity of expansion than other indexes. The following ratings define expansive soil extent 'per the ASTM D4729-11 Expansive Soils Index:

0-20%	Very Low
21-50%	Low
51-90%	Medium
91-130%	High
130%+	Very High

The eastern and western corners of the Lee County Unincorporated Areas are more vulnerable to an event due to over 50% of the area's soil composition of 'High' swelling potential, and therefore fall under the 'Medium' extent (compared to less than 50% of the area within the rest of the HMP update area being underlain by soils of "High" swelling potential, where those areas fall under the "Low" extent. Most Unified Building Codes (UBC) mandates that special foundation design consideration be employed if the Expansion Index is 20 or greater.

8.2.5 Warning Time

Soil expansion generally occurs gradually over time; however, these processes may be intensified as a result of natural or human-induced activities.

8.3 SECONDARY HAZARDS

Events that cause damage to improved areas can result in secondary hazards, such as explosions from natural gas lines, loss of utilities such as water and sewer due to shifting infrastructure, and potential failures of reservoir dams. Additionally, these events may occur simultaneously with other natural hazards such as flooding. Erosion can cause undercutting that can result in an increase in landslide or rockfall hazards. Additionally erosion can result in the loss of topsoil, which can affect agricultural production in the area. Deposition can have impacts that aggravate flooding, bury crops, or reduce capacities of water reservoirs.

8.4 CLIMATE CHANGE IMPACTS

In areas where climate change results in less precipitation and reduced surface-water supplies, communities will pump more groundwater. Changes in precipitation events and the hydrological cycle may result in changes in the rate of subsidence and soil erosion. According to a 2003 paper published by the Soil and Water Conservation Society (Soil and Water Conservation 2003):

The potential for climate change – as expressed in changed precipitation regimes – to increase the risk of soil erosion, surface runoff, and related environmental consequences is clear. The actual damage that would result from such a change is unclear. Regional, seasonal, and temporal variability in precipitation is large both in simulated climate regimes and in the existing climate

record. Different landscapes vary greatly in their vulnerability to soil erosion and runoff. Timing of agricultural production practices creates even greater vulnerabilities to soil erosion and runoff during certain seasons. The effect of a particular storm event depends on the moisture content of the soil before the storm starts. These interactions between precipitation, landscape, and management mean the actual outcomes of any particular change in precipitation regime will be complex

8.5 EXPOSURE

While all s tructures a nd foundations a re e xposed to e xpansive s oils, L ee C ounty a nd pa rticipating communities' minimal clay soil composition decreases the likelihood and severity of the seasonal swelling and c ontraction of s oils. The c ities of G iddings and Lexington as well as the majority of Lee County unincorporated area's structures and population are potentially exposed and equally at risk by expansive soils. The corners of the county (as shown in Figure 8-1) population and structures are more at risk due to their underlying s oil c omposition. Table 8-1 lists the exposed population and s tructure count for e ach participating jurisdiction.

8.5.1 Population

It can be assumed that the entire planning area is exposed equally to some extent to expansive soils events. Certain areas are more exposed due to geographic location and local weather patterns. Current growth trends could cause more area residents to be exposed to expansive soils. Increased population will increase demands on structure development, as well as surface and sub-surface soil activities, and may introduce new expansive soils in areas where soil expansion activities have not yet occurred.

8.5.2 Property

According to the HAZUS 2.2 inventory data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs), there are 7,161 buildings in the HMP update area (residential, commercial, and other) with an asset replaceable value of \$1.6 billion (excluding contents).

The vast majority of these buildings are within the participating communities and the unincorporated area. About 98% of these buildings (and 82% of the building value) are associated with residential housing.

Other types of buildings in this report include a gricultural, e ducational, religious, and g overnmental structures. (e.g. Table 8-1).

TABLE 8-1 EXPOSED STRUCTURES AND POPULATION							
Jurisdiction Residential Commercial Other * Total Structures Pop							
City of Giddings	1,590	62	22	1,674	1,473		
City of Lexington	524	8	1	533	336		
Unincorporated Area	4,921	16	17	4,954	2,536		
Planning Area Total	7,035	86	40	7,161	4,345		

Table 8-1 lists the exposed structures and population for the participating communities.

8.5.3 Critical Facilities and Infrastructure

Any critical facilities or infrastructure that are located in the participating communities on or near areas prone to expansive soils are exposed to risk from this hazard. Bare ground or lack of tree cover may result in additional exposure.

8.5.4 Environment

Expansive soils are a naturally occurring processes, but can still cause damage to the natural environment. These processes and events can alter the natural environment where they occur.

8.6 VULNERABILITY

Lee County and participating communities have low to medium risk from expansive soils because of the minimal amounts of clay with swelling potential of the soils in these communities. The eastern and western corners of the Lee County Unincorporated Areas are more vulnerable to an event due to over 50% of the area's soil composition of 'High' swelling potential, and therefore fall under the 'Medium' risk extent (compared to less than 50% of the area within the rest of the HMP update area being underlain by soils of "High" swelling potential, where those areas fall under the "Low" risk extent. Because expansive soils cannot be di rectly m odeled i n H AZUS, a nnualized losses w ere estimated using G IS-based an alysis, historical data analysis, and statistical risk assessment methodology. Event frequency, severity indicators, expert opinions, and historical local knowledge of the region were used for this assessment.

8.6.1 Population

The risk of i njury or fatalities as a r esult of this hazard is limited, but possible. The most vulnerable demographics will be the economically disadvantaged population areas, children under 16 years, and the elderly. Economically disadvantaged families and those living on a fixed income may not have the financial means to adequately deal with the effects of an event and make the necessary structurally improvements. The youth and elderly population may require further assistance as dependents if an event were to occur. Table 8-2 show vulnerable populations per participating community.

TABLE 8-2. VULNERABLE POPULATION							
Youth JurisdictionYouth Population (<16)							
City of Giddings	1,473	30.18	706	14.46	366	7.50	
Town of Lexington	336	28.55	167	14.19	74	6.29	
Lee County Unincorporated Area	2,536	24.03	1,749	16.57	641	6.07	
Lee County Total	4,345	26.16	2,622	15.78	1,081	6.51	

8.6.2 Property

All properties are equally at risk from expansive soils, but properties in poor condition or in particularly vulnerable locations (economically disadvantaged communities and areas with low tree cover) may risk the most damage. Generally, damage is minimal and goes unreported.

Loss estimations for expansive soil hazards are not based on damage functions, because no such damage functions have been generated. Instead, loss estimates were developed representing projected damages (annualized loss) on exposed values. Historical events, statistical analysis and probability factors were applied to the county's and communities exposed values to create an annualized loss. Table 8-3 lists the property loss estimates for each participating community. Annualized losses of 'negligible' are less than \$50 annually. Negligible loss hazards are still included despite minimal annualized losses because of the potential for a high value damaging event.

TABLE 8-3. LOSS ESTIMATES FOR EXPANSIVE SOILS					
Jurisdiction	Exposed Value	Annualized Loss	Annualized Loss Percentage		
City of Giddings	435,673,355	Negligible	<0.01%		
City of Lexington	88,834,754	Negligible	<0.01%		
Unincorporated Area	822,957,043	\$1.349	<0.01%		
Planning Area Total	1,347,465,151	\$1,349	<0.01%		

Vulnerability Narrative

All participating communities are equally at risk to expansive soils. Table 8-2 lists the vulnerable population per community. Table 8-3 lists the estimated annualized losses in dollars for each participating community.

- City of Giddings If an expansive soil event were to damage key transportation routes, such as FM 448, F M 141, US 290 or US 77, the entire community would be affected as mobility and emergency service acc essibility would be limited. O lder properties built with less stringent building codes are more vulnerable to damages. P roperty owners face additional maintenance costs b ecause of structure f oundation i ssues ca used by the swelling of s oils. E conomically disadvantaged households could be more affected as they may not be able to take the necessary preventive m easures or afford losses. R esidents n ot i nformed of p recautionary measures or without an emergency notification system are more vulnerable as well.
- Town of Lexington Structures of high property value and structures of critical importance are more vulnerable to expansive soils. Key transportation routes such as FM 696, FM 112 or US 77 are more vulnerable since an event in these areas could limit mobility. Residents and community members unaware of the hazards of expansive soils or their risk are more vulnerable as they may not be aware of p reventative actions or w hat to do if an event were to o ccur. More densely developed areas within the city are more susceptible to higher damages due to their higher property values.
- Lee County (Unincorporated Area) The eastern and western corners of the unincorporated county areas are more vulnerable to an event due to over 50% of the area's soil composition of 'High' swelling potential (compared to less than 50% of the area within the rest of the County being underlain by soils of "High" swelling potential). Critical facilities and structures that have not be en inspected for expansive soils may have a greater risk. Residents and business owners who are unaware of the dangers of expansive soils are more vulnerable as well. Populations in economically disadvantaged communities face an additional loss of quality of life if their building maintenance costs become high because of structure foundation issues. Rural residents may face longer response times from e mergency ser vices, e specially if k ey t ransportation routes a re

damaged (such as US 77, FM 112, FM 696 or FM 1624). Residents and community members who do not thave expansive s oil ha zard mitigation integrated into local planning a remore vulnerable as well.

Community Perception of Vulnerability

See front page of current chapter for a summary of ha zard rankings for L ee County and participating communities in this HMP update. Chapter 18 gives a detailed description of this rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

8.6.3 Critical Facilities and Infrastructure

Even though expansive soils cause enormous amounts of damage, the effects can occur slowly and may not be attributed to a specific event. The damage done by expansive soils is then attributed to poor construction practices or a m isconception t hat all buildings experience this t ype of d amage as they ag e. C racked foundations, floors, and basement walls, as well damage to the upper floors of the building when the motion in the structure is significant are typical types of damage done by swelling soils. Shrinkage can remove support from buildings or other structures and result in damaging subsidence.

When critical facilities and infrastructure are affected and closed down for maintenance due to structure foundation problems as a result of soil expansion, critical response times and services to the affected communities will become limited.

8.6.4 Environment

Ecosystems that are exposed to increased soil expansion as a result of the clay content of their soil habitats. However, some soil swelling and contraction is required for healthful ecosystem functioning. Ecosystems that are already exposed to other pressures, such as encroaching development, may be more vulnerable to impacts from these hazards.

8.7 FUTURE TRENDS IN DEVELOPMENT

Jurisdictions in the planning area should ensure that known hazard areas are regulated under their planning and zoning programs. In areas where hazards may be present, permitting processes should require geotechnical investigations to access risk and vulnerability to hazard areas. Soil expansion issues generally do impact land use and structure development. Issues pertaining to land use in these areas are likely addressed through jurisdictional building codes, ordinances, and regulations.

8.8 SCENARIO

A worst case scenario would occur if a rapidly occurring soil swelling and contraction caused severe structure deformation or the subsurface s oil to crack and open up be neath a structure where many individuals lived or worked. This situation could result in a number of injuries or fatalities and would cause extensive damage to the area directly impacted.

8.9 ISSUES

The major issues for soil expansion are the following:

- Onset of actual or observed soil expansion in many cases is related to changes in land use. Land uses permitted in known hazard areas should be carefully evaluated.
- Knowledge of hydrologic factors is critical for evaluating most types of soil swelling.
- Some l and u se and h ousing d evelopments h ave h ad soil site investigations completed b efore development. This practice should be reviewed and expanded as needed.

• More detailed analysis should be conducted for critical facilities and infrastructure exposed to hazard a reas. This analysis should ad dress how potential s tructural issues were addressed in facility design and construction.

CHAPTER 9. DAM/LEVEE FAILURE

DAM/LEVEE FAILURE RANKING			
Lee County	Low		
City of Giddings	Low		
City of Lexington	Low		

9.1 GENERAL BACKGROUND

9.1.1 Dams

Water is an essential natural resource and one of the most efficient w ays t o m anage and control w ater resources is through dam construction. A dam is defined in the Texas Water Code as a barrier, including one for flood detention, designed to impound liquid volumes and which has a height of dam greater than six feet" (Texas Administrative Code, Ch. 299, 1986).

The Texas Commission on Environmental Quality (TCEQ) has jurisdiction over rule changes to dams as 99% of dams are under state regulatory authority. Those regulations are implemented by the TCEQ D am S afety P rogram, which monitors and r egulates b oth pr ivate a nd p ublic dams i n Texas. The program periodically inspects dams that pose a high or significant hazard and makes recommendations and reports to dam owners to help them maintain safe facilities. The primary goal of the state's Dam S afety Program is to reduce the risk to lives and property from the consequences of dam failure.

In 2008, TCEQ proposed several rule changes including the definition of dams and dam classifications. According to the new definition, a d am in Texas is a b arrier with a "height greater than or equal to 25 feet and a maximum storage (top of dam) capacity of 15 acre-feet; a height greater than 6 feet and a maximum storage capacity greater than or equal to 50 acre-feet; or one that poses a threat to human life or property in the event of failure, r egardless of he ight or m aximum storage cap acity." Figure 9-1 shows the specifications required for a dam to be regulated by TCEQ.

DEFINITIONS

Breach — An opening through which floodwaters may pass after part of a levee has given way.

Dam Failure — An uncontrolled release of impounded water due to structural deficiencies in a dam.

Emergency Action Plan — A document that identifies potential emergency conditions at a dam and specifies actions to be followed to minimize property damage and loss of life. The plan specifies actions the dam owner should take to alleviate problems at a dam. It contains procedures and information to assist the dam owner in issuing early warning and notification messages to responsible downstream emergency management authorities of the emergency situation. It also contains inundation maps to show emergency management authorities the critical areas for action in case of an emergency. (FEMA 64)

High-Hazard Dam — Dams where failure or operational error will probably cause loss of human life. (FEMA 333)

Significant Hazard Dam — Dams where failure or operational error will result in no probable loss of human life but can cause economic loss, environmental damage, or disruption of lifeline facilities, or can impact other concerns. Significant hazard dams are often located in rural or agricultural areas but could be located in areas with population and significant infrastructure. (FEMA 333)

Accredited Levee — A levee that is shown on a Flood Insurance Rate Map (FIRM) as providing protection from the 1% annual chance or greater flood. A **non-accredited or de-accredited levee** is a levee that is not shown on a FIRM as providing protection from the 1% annual chance or greater flood. A **provisionally accredited levee** is a previously accredited levee that has been deaccredited for which data and/or documentation is pending that will show the levee is compliant with National Flood Insurance Program (NFIP) regulations. Source: DamSafetyAction.Org, Texas

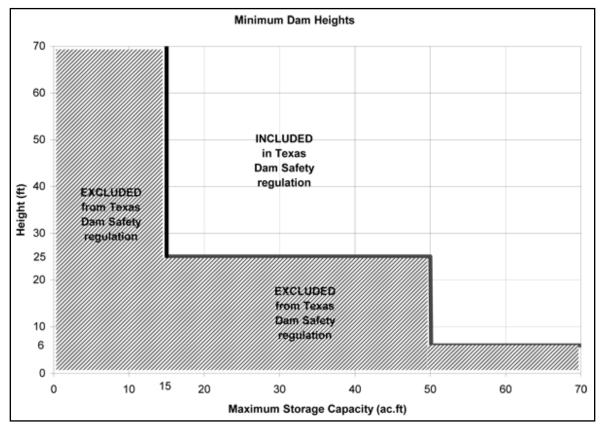
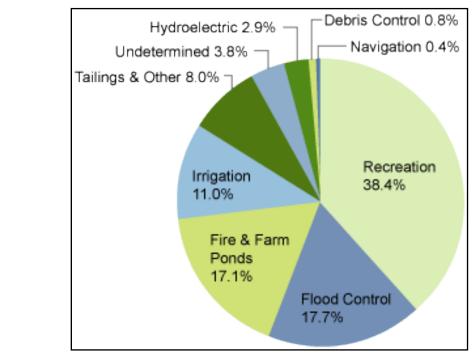



Figure 9-1. TCEQ Dam Definition

The majority of dams and lakes in Texas are used for water supply. Dams also provide benefits such as irrigation for agriculture, h ydropower, flood control, maintenance of l ake l evels, and r ecreation. T he primary purposes and benefits of dams are shown on Figure 9-2. However, d espite t he b enefits and importance of d ams to our public works infrastructure, many safety i ssues exist for dams as with an y complex infrastructure; the most serious threat is dam failure. Approximately 6% of the dams in Lee County are owned by either the local government or local government agency. The remaining 94% are privately owned.

Source: FEMA, Dams

Figure 9-2. Primary Purpose/Benefit of U.S. Dams

Approximately 6% of the dams in all of Lee County and participating communities are owned by either the local government or local government agency. The remaining 94% are privately owned. See Figure 9-3 for location of dams in the participating communities.

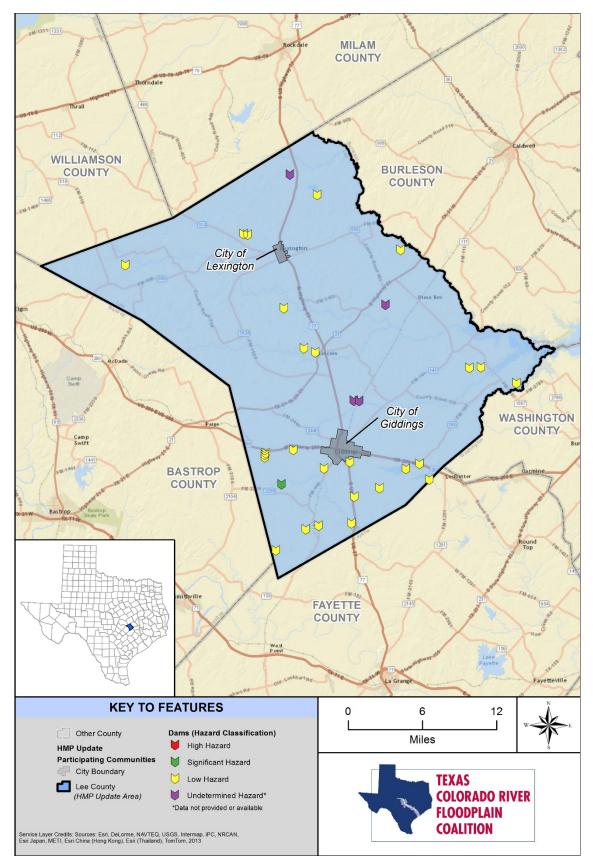


Figure 9-3. Locations of Dams in Lee County

9.1.2 Levees

The Federal Emergency Management Agency (FEMA) defines a levee as a "man-made structure, usually an e arthen e mbankment, de signed a nd c onstructed in a ccordance with s ound engineering practices t o contain, control, or divert the flow of water so as to provide protection from temporary flooding." The terms dike and levee are sometimes used interchangeably. A few examples of levee systems are the Texas City Hurricane P rotection S tructure, F reeport H urricane P rotection S tructure, the P ort A rthur H urricane Protection Structure in the Houston area, and the Trinity Floodway Levees in the Dallas area. Levees reduce the risk of flooding but no levee system can eliminate all flood risk. There is always a chance that a flood will exceed the capacity of a levee, no matter how well built. Levees can work to provide critical time for local emergency management officials to safely evacuate residents during flooding events. The possibility exists that levees can be overtopped or breached by large floods; however, levees sometimes fail even when a flood is small.

Although there are levees in all 50 states, there is no single agency responsible for levee construction and maintenance. It is a common misperception that U.S. Army Corps of Engineers (USACE) manages all levees in the nation. In reality, the levees included in the USACE Levee Safety Program represent only about 10% of the nation's levees (as estimated by the National Committee on Levee Safety). Some estimates indicate that over 100,000 miles of levees exist across the nation. Of that number, the USACE designed and constructed over 14,000 miles of levees with another 14,000 to 16,000 miles operated by other federal agencies, such as the U.S. Bureau of Reclamation. The majority of the nation's levees were constructed by private and non-federal interests and are not federally operated or maintained. However, more than 10 million people live or work behind USACE program levees. For this reason, USACE considers its role in assessing, communicating, and managing risk to be a top priority. Figure 9-4 shows USACE program levees versus other levee programs. Lee County and participating communities do not have any known levees.

Flooding c an ha ppen a nywhere, but ce rtain areas a re esp ecially p rone to se rious flooding. T o h elp communities u nderstand t heir risk b ehind l evee s tructures, F EMA u ses l evee accr editation o n f lood insurance rate maps (FIRM) to show the locations with reduced risks from the base flood. Conditions in, near, o r u nder l evees can ch ange d ue t o en vironmental f actors. The F IRMs t ake t hese f actors i nto consideration. If the risk level for a property changes, so may the requirement to carry flood insurance.

Levee accreditation is FEMA's recognition that a levee is reasonably certain to contain the base (1% annual chance exceedance, sometimes referred to as the 100-year flood) regulatory flood. In order to be accredited, levee owners must certify to FEMA that the levee will provide protection from the base flood. Certification is a technical finding by a professional engineer based on data, drawings, and analyses that the levee system meets the minimum acceptable standards. FEMA's accreditation is not a guarantee of performance; it is intended to provide updated information for insurance and floodplain development.

While there are no known certified levees in Lee County and participating communities (as shown in Figure 9-5), small private levees may exist. Therefore, a general description of levees is provided.

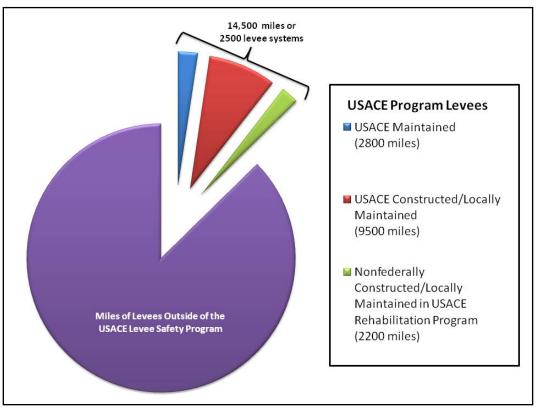


Figure 9-4. U.S. Levee Systems

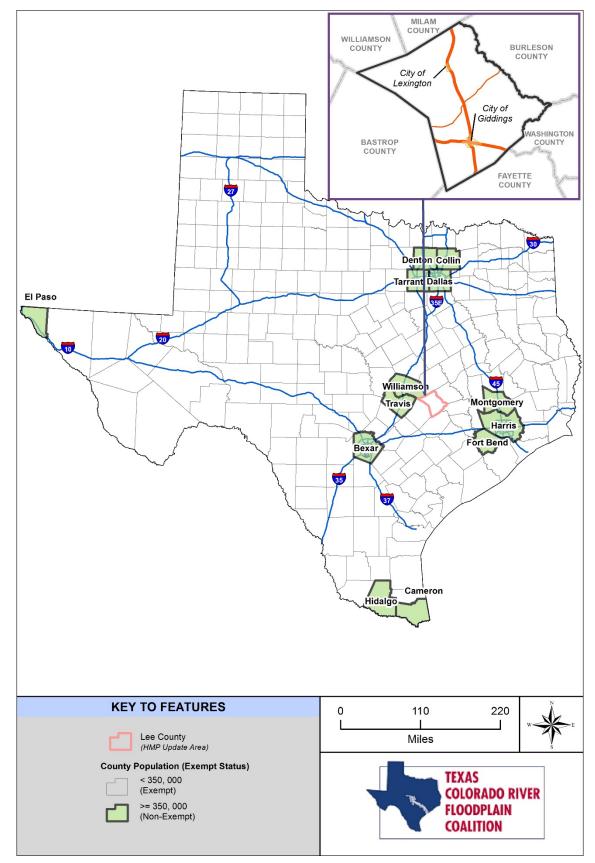


Figure 9-5. Texas Counties with Levees

9.1.3 Causes of Dam Failure

Dam failure is a collapse or breach in a dam. While most dams have storage volumes small enough that failures have little or no repercussions, dams with large storage amounts can cause significant downstream flooding. Dam failures in the United States typically occur from any one or combination of the following:

- Overtopping of the primary dam structure, which accounts for 34% of all dam failures, can occur due to inadequate spillway design, settlement of the dam crest, blockage of spillways, and other factors.
- Foundation defects due to differential settlement, slides, slope instability, uplift pressures, and foundation seepage can also cause dam failure. These account for 30% of all dam failures.
- Failure due to piping and seepage accounts for 20% of all failures. These are caused by internal erosion due to piping and seepage, erosion along hydraulic structures such as spillways, erosion due to animal burrows, and cracks in the dam structure.
- Failure due to problems with conduits and valves, typically caused by the piping of embankment material into conduits through joints or cracks, constitutes 10% of all failures.

The remaining 6% of U.S. dam failures are due to miscellaneous causes. Many dam failures in the United States have been secondary results from other disasters. The prominent causes are earthquakes, landslides, extreme storms, massive snowmelt, equipment malfunction, structural damage, foundation failures, and sabotage.

Poor construction, lack of maintenance and repair, and deficient operational procedures are preventable or correctable by a p rogram of regular inspections. Terrorism and vandalism are serious concerns that all operators of public facilities must plan for; these threats are under continuous review by public safety agencies.

9.1.4 Causes of Levee Failure

Levee data used in this report is from the FEMA Midterm Levee Inventory (MLI) and the Hazards, United States-Multi Hazard (HAZUS-MH) database. The FEMA MLI captures all levee data (USACE and non-USACE), with a primary focus on levees that provide protection from the base (1% annual chance) flood. Levees providing less than base flood protection will also be included, but only for those levees with data readily available. The HAZUS-MH database and the FEMA MLI list no known levees in Lee County. It is possible that there are private levees located within the county that are not listed in these databases.

A levee breach occurs when part of a levee gives way, creating an opening through which floodwaters may pass. A breach may occur gradually or suddenly. The most dangerous breaches happen quickly during periods of high water. The resulting torrent can quickly swamp a large area behind the failed levee with little or no warning.

Earthen levees can be damaged in several ways. For instance, strong river currents and waves can erode the surface. Debris and ice carried by floodwaters—and even large objects such as boats or barges—can collide with and gouge the levee. Trees growing on a levee can blow over, leaving a hole where the root wad and soil used to be. Burrowing animals can create holes that enable water to pass through a levee. If severe enough, any of these situations can lead to a zone of weakness that could cause a levee breach. In seismically active areas, earthquakes and ground shaking can cause a loss of soil strength, weakening a levee and possibly resulting in failure. Seismic activity can also cause levees to slide or slump, both of which can lead to failure. Unfortunately, in the rare occurrence when a levee system fails or is overtopped, severe flooding can occur due to increased elevation differences associated with levees and the increased water velocity that is created.

It is also important to remember that no levee provides protection from events for which it was not designed, and proper operation and maintenance are necessary to reduce the probability of failure. In some cases,

flooding may not be directly attributable to a river, stream, or lake overflowing its banks. Rather, it may simply be the combination of excessive rainfall or snowmelt, saturated ground, and inadequate drainage. With no place to go, the water will find the lowest elevations—areas that are often not in a floodplain. This type of flooding, often referred to as sheet flooding, is becoming increasingly prevalent as development outstrips the ability of the drainage infrastructure to properly carry and disburse the water flow. Flooding also occurs due to combined storm and sanitary sewers that cannot handle the amount of water.

The complicated nature of levee protection was made evident by events such as Hurricane Katrina. Flooding can be exacerbated by levees that are breached or overtopped. As a r esult, FEMA and USACE are reevaluating their policies regarding en forcement of levee maintenance and post-flood r ebuilding. B oth agencies a re a lso c onducting s tricter inspections to determine how much protection individual levees actually provide. The T exas Water Development Board's (TWDB) mission is to provide leadership, information, education, and support for planning, financial assistance, and outreach for the conservation and responsible development of water for Texas. TWDB will assist qualifying entities who are in good standing with the National Flood Insurance Program (NFIP) through technical and financial assistance. TWDB assistance may include grant funding, participation in levee inspections, assistance in developing Maintenance Deficiency Correction Plans, site visits, and participation in public hearings. In addition, the TWDB will also d iscourage the construction of n ew levees to protect n ew developments, and i nstead encourage other types of flood mitigation projects.

9.1.5 Regulatory Oversight

The potential for catastrophic flooding due to dam failures led to passage of the National Dam Safety Act (Public Law 92-367). The National Dam Safety Program requires a periodic engineering analysis of every major dam in the country. The goal of this FEMA-monitored effort is to identify and mitigate the risk of dam failure so as to protect the lives and property of the public.

Texas Rules and Regulations for Dam Safety and Dam Construction

Effective S eptember 1, 2013, dams are exempt from safety requirements if they are located on private property, have a maximum i mpoundment capacity of less than 500 a cre-feet, are classified as low or significant hazard, are located in a county with a population of less than 350,000 (as per 2010 U.S. Census), and are not located within the corporate limits of a municipality. Dam owners will still have to comply with maintenance and operation requirements. There is no exemption expiration date. Figure 9-6 shows counties in Texas that fall under this exemption criteria. Three of the dams in Lee County are non-exempt, three dams are exempt per 30 TAC 299, and the remainder are state-regulated. Dam count and exemptions 30 TAC 299 are detailed below by jurisdiction in Table 9-1.

TABLE 9-1. DAM COUNTS AND EXEMPTIONS				
Jurisdiction	Dam Count	Exemptions		
City of Giddings	0	0		
City of Lexington	0	0		
Lee County Unincorporated Area	31	28		
Lee County Total	31	28		
*Dams data provided by Texas Water Development Board (TWDB) in 2015.				

To help the State Dam Safety Program achieve its goal, the state's dam safety regulations now include the requirement for emergency action plans on all non-exempt Significant-Hazard and High-Hazard Potential dams (Title 30, Texas Administrative Code, Ch. 299, 299.61b).

U.S. Army Corps of Engineers Dam Safety Program

USACE is responsible for safety inspections of some federal and non-federal dams in the United States that meet the size and storage limitations specified in the National Dam Safety Act. USACE has inventoried dams; surveyed each state and federal agency's capabilities, practices, and regulations regarding design, construction, op eration a nd m aintenance of the da ms; a nd de veloped g uidelines f or i nspection and evaluation of dam safety (USACE 1997).

Federal Energy Regulatory Commission Dam Safety Program

The Federal Energy Regulatory Commission (FERC) cooperates with a large number of federal and state agencies to ensure and promote dam safety. More than 3,000 dams are part of regulated hydroelectric projects in the FERC program. Two-thirds of these are more than 50 years old. As dams age, concern about their s afety a nd i ntegrity g rows, s o ov ersight a nd r egular i nspection a re important. F ERC i nspects hydroelectric projects on an unscheduled basis to investigate the following:

- Potential dam safety problems
- Complaints about constructing and operating a project
- Safety concerns related to natural disasters
- Issues concerning compliance with the terms and conditions of a license

Every 5 years, an independent engineer approved by the FERC must inspect and evaluate projects with dams higher than 32.8 feet (10 meters) or with a total storage capacity of more than 2,000 acre-feet.

FERC monitors and evaluates seismic research and applies it in investigating and performing structural analyses of hydroelectric projects. FERC also evaluates the effects of potential and actual large floods on the safety of dams. During and following floods, FERC visits dams and licensed projects, determines the extent o f d amage, i f an y, an d d irects an y n ecessary st udies or r emedial m easures the l icensee m ust undertake. The FERC publication *Engineering Guidelines for the Evaluation of Hydropower Projects* guides the FERC engineering staff and licensees in evaluating dam safety. The publication is frequently revised to reflect current information and methodologies.

FERC r equires licensees to prepare e mergency action plans and c onducts training s essions on how to develop and test these plans. The plans outline an early warning system if there is an actual or potential sudden release of water from a dam due to failure. The plans include operational procedures that may be used, such as reducing reservoir levels and reducing downstream flows, as well as procedures for notifying affected residents and agencies responsible for emergency management. These plans are frequently updated and tested to ensure that everyone knows what to do in emergency situations.

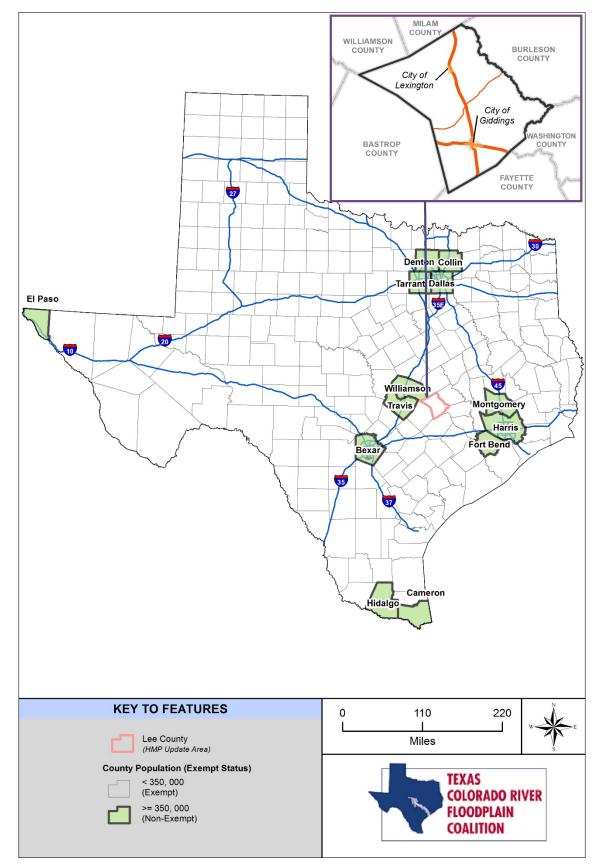
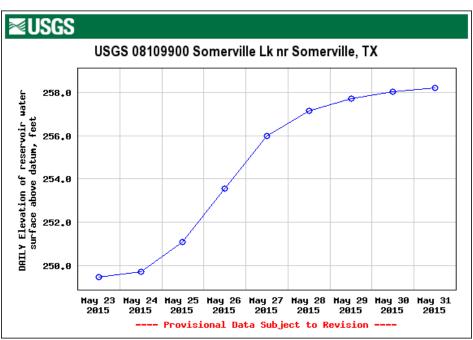


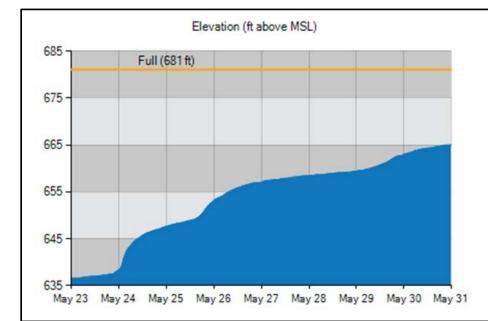
Figure 9-6. Texas County Population Exemptions for Dams

9.2 HAZARD PROFILE


9.2.1 Past Events

There are approximately 7,290 dams in the inventory of dams in Texas. Only two major dam failures have occurred in the entire Texas Colorado River Floodplain Coalition (TCRFC) planning region. Both occurred in the City of Austin, which is not a participating jurisdiction in this effort. The last failure for the city was in 1915. There have been no previous dam failure events in Lee County and the participating communities.

After a series of high-profile failures throughout the United States during the 1960s and early 1970s, the U.S. Congress enacted legislation mandating inspections and strict safety requirements for all governmental and privately operated dams. Stricter state and federal dam safety regulations were adopted in the 1970s and 1980s as a direct response to numerous dam failures across the country. These standards require that dams be able to withstand the most severe flood imaginable, the Probable Maximum Flood (PMF). This flood is so severe and statistically remote that its probability of occurrence in any given year cannot be measured. Since that time the number of failures and deaths has dramatically decreased.


The Lower Colorado River Authority (LCRA) conducted a Dam Modernization Program between 1994 and 2004 to strengthen the dams in its jurisdiction and ensure their safety for years to come. This program addressed a common problem with the stability of the "gravity" sections of the dams. Since gravity sections derive strength from their size and weight, post-tensioned anchors were added to improve stability. The dam modernization program helps ensure that LCRA's dams meet required design safety standards to resist the water load and pressure of the PMF.

An extreme precipitation event occurred May 23 through 25, 2015, (this event is further outlined in Chapter 12, Flood) causing a rise in Lake Somerville (Figure 9-7) and Lake Travis (Mansfield Dam, Figure 9-8); however no releases occurred from LCRA.

Source: USGS

Figure 9-7. Lake Somerville Water Surface Elevation During the May 2015 Precipitation Event

Source: LCRA

Figure 9-8. Lake Travis Water Surface Elevation During the May 2015 Precipitation Event

9.2.2 Location

TWDB provided a database of dams based on the National Inventory of Dams. There are no high hazard dams in the participating communities. There is one significant hazard dam in the HMP update area. This is the Domaschk Biar Lake Dam off Knobbs Creek, in the unincorporated area of Lee County. This database lists 31 dams in Lee County and participating communities and classifies dams based on the potential hazard to the downstream area resulting from failure or mis-operation of the dam or facilities:

- High-Hazard Potential—Probable loss of life (one or more persons)
- Significant-Hazard P otential—No probable loss of human life but c an c ause e conomic loss, environment damage, disruption of lifeline facilities, or impact other concerns; often located in predominantly rural or agricultural areas but could be located in a reas with population and significant infrastructure
- Low-Hazard P otential—No pr obable loss of human life and low e conomic or environmental losses; losses are principally limited to the owner's property

Based on these classifications, there are no TWDB ranked high hazard dams and only one TWDB ranked significant-hazard da m i n L ee C ounty a nd pa rticipating c ommunities. The s ignificant ha zard d am i s Domaschk Biar Lake Dam, located in unincorporated Lee County, with a maximum storage of 240 acrefeet. Figure 9-9 shows locations of the dams in the participating communities. Figure 9-9 shows the estimated potential dam inundation extents and population vulnerability. There are no known levees in the planning area.

There are an uncounted number of 'non-jurisdictional' dams on public and private lands in the county. These are small dams that normally do not store water but may impound water during heavy precipitation events. Because they are not monitored or maintained, there is potential for them to overtop or fail and cause flooding and property damage during a significant rainfall event. The extent and risk associated with these dams is not known.

Due to the numerous rivers and creeks throughout the county, the whole county is at risk. The areas of the county most likely to be impacted by a dam failure are the downstream areas of City of Giddings along

Cummins Creek, and central portion of Lee County along Cummins Creek and Middle Yegua Creek. Lee County could be impacted by several high-hazard dams that are located outside of the county. If a failure of one of these high-hazard dams occurred, it could result in loss of life. Other high-hazard dams are located outside of the county and their drainages enter Lee County either by direct drainage through parts of the county or by i nflow i nto the C olorado R iver or o ther r ivers and c reeks ups tream f rom L ee C ounty. Additional major dams located outside of the planning area that could affect the participating communities, including A looa L ake D am an d E ast A rea E nd L ake D am ar e located ap proximately 8 and 5 m iles, respectively, u pstream of L ee C ounty, al ong the E ast Y egua Creek. A detailed de scription of indirect exposure and vulnerability per jurisdiction is described in Chapter 9.5 and Chapter 9.6.

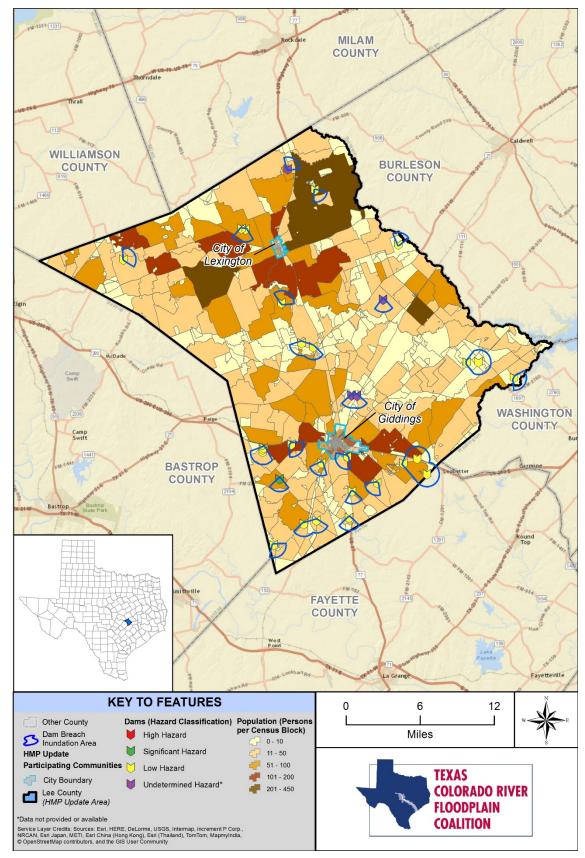


Figure 9-9. Locations of Dams in Lee County

9.2.3 Frequency

There has been no occurrence of dam failure in the past 100 years in the HMP update area. Overall, the probability of a dam failure somewhere in Lee County and the participating communities is considered rare or unlikely (event not probable in the next 10 years). This same probability applies to future events (event not probable in the next 10 years).

9.2.4 Severity

USACE and TCEQ developed the classification system shown in Table 9-2 and Table 9-3 for the hazard potential of dam failures. The hazard rating systems are both based only on the potential consequences of a dam failure; neither system takes into ac count the probability of such failures. Table 9-3 shows the specifications required for a dam to be regulated by TCEQ.

TABLE 9-2. USACE HAZARD POTENTIAL CLASSIFICATION				
Hazard Category	Direct Loss of Life ^b	Lifeline Losses ^c	Property Losses ^d	Environmental Losses ^e
Low	None (rural location, no permanent structures for human habitation)	No disruption of services (cosmetic or rapidly repairable damage)	Private agricultural lands, equipment, and isolated buildings	Minimal incremental damage
Significant	Possible (rural location, only transient or day-use facilities)	Disruption of essential facilities and access	Major public and private facilities	Major mitigation required
High	Certain (one or more persons; extensive residential, commercial, or industrial development)	Disruption of essential facilities and access	Extensive public and private facilities	Extensive mitigation cost or impossible to mitigate

a. Categories are assigned to overall projects, not individual structures at a project.

b. Loss of life potential based on inundation mapping of area downstream of the project. Analyses of loss of life potential should take into account the population at risk, time of flood wave travel, and warning time.

c. Indirect threats to life caused by the interruption of lifeline services due to project failure or operational disruption; for example, loss of critical medical facilities or access to them.

d. Damage to project facilities and downstream property and indirect impact due to loss of project services, such as impact due to loss of a dam and navigation pool, or impact due to loss of water or power supply.

e. Environmental impact downstream caused by the incremental flood wave produced by the project failure, beyond what would normally be expected for the magnitude flood event under which the failure occurs.

Source: U.S. Army Corps of Engineers 1995

TABLE 9-3. TCEQ HAZARD POTENTIAL CLASSIFICATION				
Hazard Category	Human Impact	Economic Impact		
Low	No loss of life expected (no lives or permanent habitable structures in the inundation area)	Minimal economic loss (failure may cause damage to occasional farms, agricultural improvements, and minor highways)		
Significant	Loss of life is possible (1 to 6 lives or 1 to 2 permanent habitable structures in the inundation area)	Appreciable economic loss (failure may cause damage to isolated homes, secondary highways, minor railroads, or cause interruption of public services)		
High	Loss of life is expected (7 or more lives or 3 or more permanent habitable structures in the inundation area)	Excessive economic losses (failure may cause damage to public, agricultural, industrial, or commercial facilities or utilities, and main highways or railroads)		

9.2.5 Warning Time

Warning time for dam failure varies depending on the cause of the failure. In events of extreme precipitation or massive snowmelt, evacuations can be planned with sufficient time. In the event of a structural failure due to earthquake, there may be no warning time. A dam's structural type also affects warning time. Earthen dams do not tend to fail completely or instantaneously. Once a breach is initiated, discharging water erodes the breach until either the reservoir water is depleted or the breach resists further erosion. Concrete gravity dams also tend to have a partial breach as one or more monolith sections are forced apart by escaping water. The time of breach formation ranges from a few minutes to a few hours (USACE 1997).

Emergency action plans for all high-hazard dams that would affect Lee County are on file with TCEQ. Additionally, possible evacuation routes in the event of a failure have been identified.

9.3 SECONDARY HAZARDS

Dam failure can cause severe downstream flooding, depending on the magnitude of the failure. Other potential secondary hazards of dam failure are landslides around the reservoir perimeter, bank erosion on the rivers, and destruction of downstream habitat.

9.4 CLIMATE CHANGE IMPACTS

Dams are designed partly based on assumptions about a river's flow behavior, expressed as hydrographs. Changes in weather patterns can have significant effects on the hydrograph used for the design of a dam. If the hygrograph changes, it is conceivable that the dam can lose some or all of its designed margin of safety, also known as freeboard. If freeboard is reduced, dam operators may be forced to release increased volumes earlier in a storm cycle in order to maintain the required margins of safety. Such early releases of increased volumes can increase flood potential downstream.

Dams are constructed with safety features known as "spillways." Spillways are put in place on dams as a safety measure in the event of the reservoir filling too quickly. Spillway overflow events, often referred to as "design failures," result in increased discharges downstream and increased flooding potential. Although climate change will not increase the probability of catastrophic dam failure, it may increase the probability of design failures.

9.5 EXPOSURE

Dam d ata r ecords and exposures a re d escribed in g eneral in this section. Figure 9-9 shows potential estimated areas of impact by a dam breach on population and property by census block. A proportionate analysis of the population and property within the inundation zone (based on Census blocks) was conducted over the study area. This analysis is shown in Table 9-5. The results of this analysis were combined with historical and local knowledge (including previous events) to get a complete exposure and vulnerability analysis. While some communities have property and population that may be effected by an event, due to the lack of previous events, local knowledge and no high hazard dams or levees in the area, the overall probability of occurrence is minimal and therefore classified the hazard risk as 'Low'. This table includes upstream dams outside of the planning area that may affect Lee County participating communities. This applies to all communities; Lee County, the City of Giddings, and City of Giddings.

Table 9-4 below list the dams in each jurisdiction, as well as dam height, maximum discharge, and storage. A higher discharge and storage area corresponds with a greater extent of damage from a dam failure. High hazard dams (There are no high hazard dams in Lee County) are susceptible to human, economic, and environmental impact from a failure (Table 9-2 and Table 9-3).

Overall, d am f ailure im pacts w ould likely b e r are and limited i n L ee C ounty, la rgely a ffecting the downstream areas during a failure event. Roads closed due to dam failure floods could result in serious transportation disruptions due to the limited number of roads in the county. The maximum inundation depth for a dam breach would be in line to the height of the dam, as listed in the table below. Small dams in the rural parts of unincorporated area of the county do not have the data available to predict breach analysis inundation e ffects on l ocal r oad c rossing. E xisting r oad c losure policies a nd e mergency m anagement practices will be used. East Yegua Creek near Dime Box, TX has a bank full stage of 9 feet and a flood stage of 12 feet. The Middle Yegua Creek near Dime Box, TX bank full stage of 8 feet and a flood stage of 10 feet. Participating communities use gauges for measurements, monitoring of conditions, road closures, and emergency conditions during events.

TABLE 9-4. LEE COUNTY AND PARTICIPATING COMMUNITIES DAM EXTENTS				
Dam Name	Community	Dam Height (feet)	Max Discharge (cubic feet/second)	Max Storage (acre feet)
BAMSCH LAKE DAM	Unincorporated Area	18	400	125
BREDTHAUER LAKE DAM	Unincorporated Area	22	NA	290
C AND H LAKE DAM	Unincorporated Area	14	NA	330
CARAWAY LAKE NO 1 DAM	Unincorporated Area	20	180	101
CARAWAY LAKE NO 2 DAM	Unincorporated Area	23	750	240
CUMMINS CREEK WS SCS SITE 1 DAM	Unincorporated Area	25	1,440	5,627
CUMMINS CREEK WS SCS SITE 2 DAM	Unincorporated Area	18	24,000	1,888

TABLE 9-4. LEE COUNTY AND PARTICIPATING COMMUNITIES DAM EXTENTS				
Dam Name	Community	Dam Height (feet)	Max Discharge (cubic feet/second)	Max Storage (acre feet)
DOMASCHK BIAR LAKE DAM	Unincorporated Area	15	NA	240
DRAEGER LAKE DAM	Unincorporated Area	20	NA	104
EDWARD JOHNSON LAKE 1 DAM	Unincorporated Area	20	1,550	124
EDWARDS JOHNSON LAKE 2 DAM	Unincorporated Area	NA	NA	NA
FIELD LAKE DAM	Unincorporated Area	14	NA	101
GERDES LAKE NO 1 DAM	Unincorporated Area	13	850	53
GERDES LAKE NO 2 DAM	Unincorporated Area	18	NA	101
GOERLITZ LAKE DAM	Unincorporated Area	12	NA	58
GOLUB LAKE DAM	Unincorporated Area	23	255	167
HAMFF LAKE NO 1 DAM	Unincorporated Area	20	NA	96
HAMFF LAKE NO 2 DAM	Unincorporated Area	18	NA	123
HAMFF LAKE NO 3 DAM	Unincorporated Area	17	NA	82
KASPER ESTATE LAKE DAM	Unincorporated Area	14	NA	73
LAKE ROBERT L PHINNEY DAM	Unincorporated Area	25	4,940	2,083
LARRY WILLIAMS DAM	Unincorporated Area	NA	NA	NA
MANTZEL DAM	Unincorporated Area	19	0	200
MUELLER LAKE DAM	Unincorporated Area	30	NA	396
POWELL LAKE DAM	Unincorporated Area	18	NA	130
SIEVERT LAKE DAM	Unincorporated Area	18	NA	130
SMITH LAKE DAM	Unincorporated Area	18	NA	87

Dam Name	Community	Dam Height (feet)	Max Discharge (cubic feet/second)	Max Storage (acre feet)
WALKER LAKE DAM	Unincorporated Area	18	NA	137
WALTER DROEMER LAKE DAM	Unincorporated Area	18	NA	108
WEISER GSS	Unincorporated Area	18	255	83
WOLFF GSS	Unincorporated Area	24	255	138
ALCOA LAKE DAM**	Milam County	58	34,500	19,600
EAST AREA END LAKE DAM**	Milam County	10	NA	5,095

9.5.1 Population

Vulnerable populations are populations downstream from dam failures or behind levees that are incapable of escaping the area within the allowable time frame. This population includes the elderly and young who may be unable to get themselves out of the inundation area. The vulnerable population also includes those who would not have adequate warning from a television or radio emergency warning system. Table 9-5 lists the exposed structures and population for the participating communities based on the estimated inundation areas.

9.5.2 Property

According to the HAZUS 2.2 inventory data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs), there are 7,161 buildings in the HMP update area (residential, commercial, and other) with an asset replaceable value of \$1.6 billion (excluding contents).

The vast majority of these buildings are within the participating communities and the unincorporated area. About 98% of these buildings (and 82% of the building value) are associated with residential housing.

Other types of buildings in this report include a gricultural, e ducational, religious, and g overnmental structures.

See hazard loss tables for community-specific total assessed numbers (for e.g. Table 17-5).

Population and structures within the dam inundation zone (as defined in Section 9.5) are described below.

TABLE 9-5. EXPOSED STRUCTURES AND POPULATION									
Jurisdiction	Jurisdiction Residential Commercial Other * Total Structures								
City of Giddings	90	1	2	93	284				
Town of Lexington	0	0	0	0	0				
Lee County Unincorporated Area	1418	8	10	1436	3,052				
Lee County Total	1508	9	12	1529	3,336				

9.5.3 Critical Facilities and Infrastructure

Any critical facilities or infrastructure that are located within the dam inundation area are exposed to risk from the hazard. Dam or levee failure can result in serious structural damage to critical facilities and infrastructure, in particular roads, bridges, underground utilities, and pipelines.

9.5.4 Environment

Reservoirs held behind dams affect many ecological aspects of a river. River topography and dynamics depend on a wide range of flows, but rivers below dams often experience long periods of very stable flow conditions or saw-tooth flow patterns caused by releases followed by no releases. Water releases from dams usually contain very little suspended sediment; this can lead to scouring of river beds and banks.

The environment would be vulnerable to a number of risks in the event of dam failure. The inundation could introduce many foreign elements into local waterways. This could result in destruction of downstream habitat and could have detrimental effects on many species of animals.

9.6 VULNERABILITY

Dam failure inundation mapping for the planning area was not available to allow HAZUS loss estimations to be modeled. Due to this data deficiency, annualized losses were estimated using GIS-based analysis, historical data analysis, and statistical risk assessment methodology. Event frequency, severity indicators, expert opinions, and historical local knowledge of the region were used for this assessment. Overall, dam failure impacts would likely be rare and limited in Lee County and the participating communities, with 10 to 25% of the planning area affected during a failure event. While parts of the county could be effected, the likelihood of this occurring (based on historical events, and local knowledge) is minimal. Roads closed due to dam failure floods could result in serious transportation disruptions due to the limited number of roads in the HMP update area.

9.6.1 Population

The risk of injury or fatalities as a result of this hazard is limited, but possible.

The most vulnerable demographics will be the economically disadvantaged population areas, children under 16 years, and the elderly. See Table 9-6 for vulnerable populations per participating community in the inundation area.

TABLE 9-6. VULNERABLE POPULATION								
JurisdictionYouth Population (<16)								
City of Giddings	81	28.52	44	15.49	11	3.87		
Town of Lexington	0	0.00	0	0.00	0	0.00		
Lee County Unincorporated Area	713	23.36	527	17.27	162	5.31		
Lee County Total	794	23.80	571	17.17	173	5.19		

9.6.2 Property

Downstream properties in the inundation area are equally at risk from a dam breach, but properties in poor condition or in particularly vulnerable locations (economically disadvantaged communities and areas nearest to the dam breach) may risk the most damage.

Loss estimations for dam hazards are not based on HAZUS modeled damage functions, because detailed dam inundation mapping from hydrology and hydraulic modeling was unavailable. Annualized losses were estimated using GIS-based analysis, historical data analysis, and statistical risk assessment methodology. Event frequency, severity indicators, expert opinions, and historical local knowledge of the region were used for this as sessment. Table 9-7 lists the property loss estimates for each participating community. Annualized losses of 'negligible' are less than \$50 annually. Negligible loss hazards are still included despite minimal annualized losses because of the potential for a high value damaging event.

TABLE 9-7. LOSS ESTIMATES FOR DAM BREACH								
Jurisdiction	Exposed Value	Annualized Loss	Annualized Loss Percentage					
City of Giddings	48,124	Negligible	<0.01					
Town of Lexington	0	Negligible	<0.01					
Lee County Unincorporated Area	511,955	Negligible	<0.01					
Lee County Total	560,079	Negligible	<0.01					

Vulnerability Narrative

All participating communities are equally at risk to a dam breach. Table 9-6 lists the vulnerable population per community. Table 9-7 lists the estimated annualized losses in dollars for each participating community.

- **City of Giddings** The City of Giddings does not have any documented dams within the city limits. Because of possible indirect exposure from dams in the unincorporated area in Lee County, the City of Giddings classified the hazard risk as 'Low'.
- **Town of Lexington** The Town of Lexington does not have any documented dams within the city limits. Because of possible indirect exposure from dams in the unincorporated area in Lee County, the Town of Lexington classified the hazard risk as 'Low'.
- Lee County (Unincorporated Area) Lee County Unincorporated Areas do not have any high hazard dams within the County. With no known previous events and local knowledge, the Lee County Unincorporated Area is classified the hazard risk as 'Low.

Community Perception of Vulnerability

See front page of current chapter for a summary of ha zard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

9.7 FUTURE TRENDS IN DEVELOPMENT

Land use in the planning area will be directed by general plans. The safety elements of the general plans establish standards and plans for the protection of the community from hazards. Dam or levee failure is not typically addressed as a standalone hazard in the safety elements, but flooding is. The planning partners have established plans and policies regarding sound land use in identified flood hazard areas. Most of the areas vulnerable to the more severe impacts from dam failure are likely to intersect the mapped flood hazard areas. Flood-related policies in the general plans will help to reduce the risk associated with the dam failure hazard for all future development in the planning area.

9.8 SCENARIO

An earthquake in the region (although rare) could lead to liquefaction of soils around a dam or levee. This could occur without warning during any time of the day. A human-caused failure such as a terrorist attack also could trigger a catastrophic failure of a dam or levee that i mpacts the planning a rea. While the probability of dam or levee failure is very low, the probability of flooding associated with changes to dam operational parameters in response to climate change is higher. Dam or levee designs and operations are developed based on hydrographs with historical record. If these hydrographs experience significant changes over time due to the impacts of climate change, the design and operations may no longer be valid for the changed c ondition. This c ould have s ignificant impacts on dams or levees that provide flood c ontrol. Specified release rates and impound thresholds may have to be changed. This would result in increased discharges downstream of these facilities, thus increasing the probability and severity of flooding.

9.9 ISSUES

The most significant issue associated with dam and levee failure involves the properties and populations in the inundation zones. Flooding as a result of a dam failure would significantly impact these areas. There is often limited warning time for dam failure. These events are frequently associated with other natural hazard events such as earthquakes, landslides, or severe weather, which limits their predictability and compounds the hazard. Important issues associated with dam failure hazards include the following:

- Federally r egulated d ams h ave an ad equate l evel of ov ersight a nd s ophistication i n the development of emergency action plans for public notification in the unlikely event of failure. However, the protocol for notification of downstream citizens of imminent failure needs to be tied to local emergency response planning.
- Mapping for federally regulated dams is already required and available; however, mapping for non-federally regulated dams that estimates inundation depths is needed to better assess the risk associated with dam failure from these facilities.

- Most dam failure mapping required at federal levels requires determination of the PMF. While the PMF represents a w orst-case scenario, it is generally the event with the lowest probability of occurrence. F or non-federally regulated dams, mapping of dam failure scenarios that are less extreme than the PMF but have a higher probability of occurrence can be valuable to emergency managers and community o fficials downstream of these facilities. This type of mapping can illustrate areas potentially impacted by more frequent events to support emergency response and preparedness.
- The concept of residual risk associated with structural flood control projects should be considered in the design of capital projects and the application of land use regulations.
- Security concerns should be addressed and the need to inform the public of the risk associated with dam failure is a challenge for public officials.
- Lee County should maintain accreditation of its levees (if any).

CHAPTER 10. DROUGHT AND EXTREME HEAT

DROUGHT AND EXTREME HEAT RANKING								
Jurisdiction	Drought	Extreme Heat						
Lee County	High	High						
City of Giddings	Medium	Medium						
City of Lexington	Medium	High						

10.1 GENERAL BACKGROUND

10.1.1 Drought

DEFINITIONS

Drought — The cumulative impacts of several dry years on water users. It can include deficiencies in surface and subsurface water supplies and generally impacts health, wellbeing, and quality of life.

Extreme Heat — Summertime weather that is substantially hotter or more humid than average for a location at that time of year.

Drought is a normal phase in the climatic cycle of most geographical areas. A ccording to the National Drought Mitigation Center, drought originates from a deficiency of precipitation over an extended period, usually a season or more. This results in a water shortage for some activity, group, or environmental sector. Drought is the result of a si gnificant decrease in water supply relative to what is "normal" in a given location. Unlike most di sasters, dr oughts no rmally oc cur s lowly but 1 ast a 1 ong t ime. T here a re f our generally accepted operational definitions of drought (Wilhite and Glantz 1985):

- **Meteorological drought** is an expression of precipitation's departure from normal over some period of time. Meteorological measurements are the first indicators of drought. Definitions are usually region-specific, and based on an understanding of regional climatology. A definition of drought developed in one part of the world may not apply to another, given the wide range of meteorological definitions.
- Agricultural drought occurs when there is not enough soil moisture to meet the needs of a particular crop at a particular time. Agricultural drought happens after meteorological drought but before hydrological drought. A griculture is usually the first economic sector to be affected by drought.
- **Hydrological drought** refers to d eficiencies in su rface and su bsurface w ater supplies. It is measured as s tream flow and as lake, r eservoir, and g roundwater levels. There is a time lag between lack of rain and t he v olume of w ater in streams, rivers, lakes, and r eservoirs, s o hydrological measurements are not the earliest indicators of drought. After precipitation has been reduced or deficient over an extended period of time, this shortage is reflected in declining surface and subsurface water levels. Water supply is controlled not only by precipitation, but also by other factors, i ncluding e vaporation (which is increased by hi gher t han no rmal he at a nd w inds), transpiration (the use of water by plants), and human use.
- Socioeconomic drought occurs w hen a p hysical water sh ortage s tarts t o affect p eople, individually and c ollectively. Most so cioeconomic d efinitions of d rought associate it with the supply and demand of an economic good.

Defining when drought begins is a function of the impacts of drought on water users, and includes consideration of the supplies available to local water users as well as the stored water they may have available in surface reservoirs or groundwater basins. Different local water agencies have different criteria for d efining dr ought c onditions in their jurisdictions. S ome a gencies i ssue dr ought watch o r d rought warning announcements to their customers. Determinations of regional or statewide drought conditions are usually based on a combination of hydrologic and water supply factors.

10.1.2 Extreme Heat

Excessive heat events are defined by the U.S. Environmental Protection Agency (EPA) as "summertime weather that is substantially hotter or more humid than average for a location at that time of year" (EPA 2006). C riteria that de fine an excessive heat event may d iffer am ong j urisdictions and in the s ame jurisdiction depending on the time of year. Excessive heat events are often a result of more than just ambient air temperature. Heat index tables (see Figure 10-1) are commonly used to provide information about how hot it feels, which is based on the interactions between several meteorological conditions. Since heat index values were devised for shady, light wind conditions, exposure to full sunshine can increase heat index values by up to 15 degrees Fahrenheit (°F). Also, strong winds, particularly with very hot, dry air, can be extremely hazardous.

Source: NOAA National Weather Service

	NOAA's National Weather Service																
								Hea	t Ind	ex							
	Temperature (°F)																
		80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110
	40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136
(45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	
%)	50	81	83	85	88	91	95	99	103	108	113	118	124	131	137		
Relative Humidity (%)	55	81	84	86	89	93	97	101	106	112	117	124	130	137			
nid	60	82	84	88	91	95	100	105	110	116	123	129	137				
Inn	65	82	85	89	93	98	103	108	114	121	128	136					
еН	70	83	86	90	95	100	105	112	119	126	134						
tiv	75	84 84	88 89	92	97	103	109	116	124	132							
ela	80	· · ·	09 90	94 96	100	106	113 117	121 126	135								
R	85 90	85 86	90	90 98	102 105	110 113	122	131	155								
	95	86	93	100	103	117	122	151									
	100	87	95	103	112	121	132										
l	100	07	00	100	112	121	102										
			Like	elihood	d of He	eat Di	sorder	s with	Prolo	naed	Expos	ure or	Stren	uous	Activit	v	
		_								5	_					-	
			Cauti	on		LE	xtreme	Cauti	on			Dange	r	E	xtreme	e Dang	er
			Class	ificatio	n Hea					Effec	t on the	e body					
			Ca	ution	80°		itigue p	ossible	e with p	orolong	ed exp	osure	and/or	physic	al activ	/ity	
				reme ution	90° 103		Heat					at exha or phy			le with		
			Da	nger	103° 124		leat cra					ely, an nd/or pl				ble	
				reme nger	125° higt				Н	eat str	oke hiç	jhly like	ely				

10.2 HAZARD PROFILE

Droughts originate from a deficiency of precipitation resulting from an unusual weather pattern. If the weather pattern lasts a short time (a few weeks or a couple months), the drought is considered short-term. If the weather pattern becomes entrenched and the precipitation deficits last for several months or years, the drought is considered to be long-term. It is possible for a region to experience a long-term circulation

pattern that produces drought, and to have short-term changes in this long-term pattern that result in short-term wet spells. Likewise, it is possible for a long-term wet circulation pattern to be interrupted by short-term weather spells that result in short-term drought.

Precipitation into the area lakes and dams is the main source of Texas' water supply. Precipitation is the only naturally reoccurring/renewable water supply for Lee County. Annual precipitation in the planning area is approximately 30 to 40 inches per year. There are various streams and tributaries contributing to water supply in the area. This supply is stored in four forms throughout the state: streamflow, reservoir water, soil moisture, and groundwater.

The summer months in Texas are frequently affected by severe heat hazards. Persistent domes of high pressure establish themselves, which s et up ho t and dr y c onditions. This high pressure prevents other weather features such as cool fronts or rain events from moving into the area and providing necessary relief. Daily high temperatures range into the upper 90s and low 100s. When combined with moderate to high relative humidity levels, the heat index moves into dangerous levels, and a heat index of 105°F is considered the level where many people begin to experience extreme discomfort or physical distress.

10.2.1 Past Events

Drought

Texas officially experienced the driest nine-month period in the state's history between October 2010 and June 2011 according to the National Weather Service (NWS) in Fort Worth. This beat the previous record of June 1917 to February 1918. The substantial dry period has led to widespread extreme to exceptional drought conditions throughout the state. The 2010-2011 drought neared record levels, ranking as the third worst in Texas history. The worst of the 2010-2011 drought was in c entral and western Texas where precipitation deficits during the 10 months exceeded 20 inches in some areas.

Based on previous occurrences, drought conditions in South Central Texas counties, such as Lee County (and participating communities), are usually limited, typically with periods of abnormal dryness to short-term drought. These drought conditions are shown as D0 drought intensity and by the short-term boundary lines in Figure 10-2 and Figure 10-3. These figures show the severity of drought conditions in Texas in spring 2012 and spring 2015. As of March 2015, portions of Lee County (and participating communities), were only experiencing short-term drought conditions (typically less than 6 months and only in grassland and agricultural areas). The drought conditions in South Central Texas changed in May 2015 with heavy spring rains falling over the Texas region. Lee County (and participating communities), like much of Texas, saw its wettest May on record. Texas received a statewide average of 8.81 inches of rain in May 2015, exceeding the previous record wet month of June 2004 during which a statewide average of 6.66 inches of rain fell, according to the Office of the State Climatologist at Texas A&M University. Texas received more rain in the first 5 months of 2015 than in all of 2011.

Figure 10-4 shows the drought conditions as of June 2015. For the first time in 3 years, none of the state falls w ithin the U.S. D rought M onitor's m ost s evere c lassification. L ee C ounty (and pa rticipating communities) are now no longer experiencing drought and area reservoirs are 100% full or experienced large capacity gains during the spring and early summer of 2015.

The National Drought Mitigation Center developed the Drought Impact Reporter in response to the need for a national drought impact database for the United States. Information comes from a variety of sources: on-line drought-related news stories and scientific publications, members of the public who visit the website and submit a drought-related impact for their region, members of the media and members of relevant government agencies. The database is being populated beginning with the most recent impacts and working backward in time. Since drought impacts affect large areas across multiple counties, the impacts affects Lee County and participating communities equally.

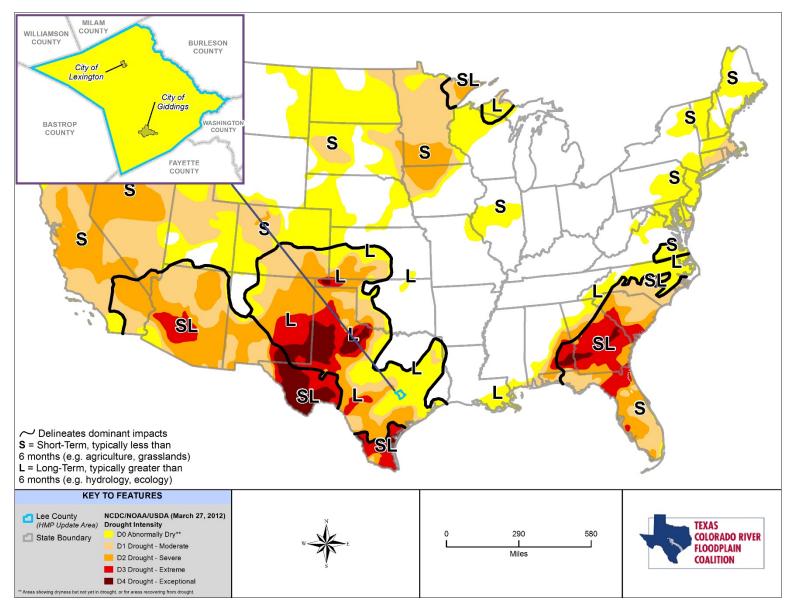


Figure 10-2. U.S. Drought Monitor, March 27, 2012

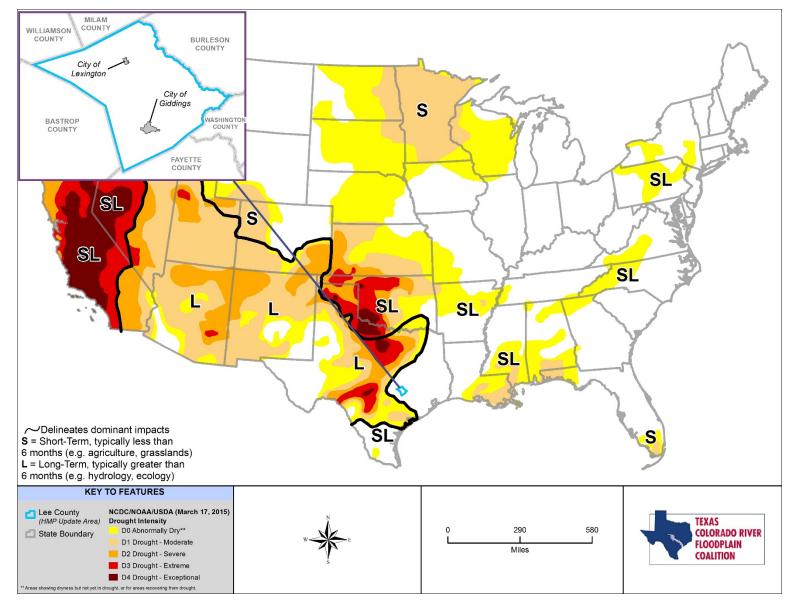


Figure 10-3. U.S. Drought Monitor, March 17, 2015

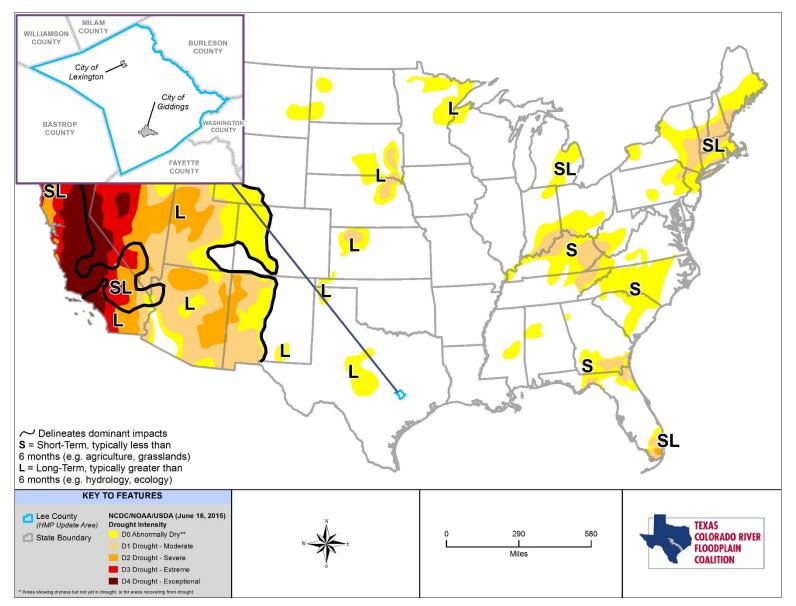


Figure 10-4. U.S. Drought Monitor, June 16, 2015

The Drought Impact Reporter

The Drought Impact Reporter contains information on impacts from droughts that affected Lee County and participating communities between January 2005 and April 2015. Most of the impacts were classified as "agriculture" (245). Other impacts include "society and public health" (70), "fire" (115), "tourism and recreation" (7), "water supply and quality" (54), "energy" (11), "business and industry" (30), "plants and wildlife" (73), and "relief, response, and restrictions" (129). These categories are described as follows:

- Agriculture Drought effects associated with agriculture, farming, aquaculture, horticulture, forestry, or ranching. Examples of drought-induced agricultural impacts include damage to crop quality; income loss for farmers due to reduced crop yields; reduced productivity of cropland; insect infestation; plant disease; increased irrigation costs; cost of new or supplemental water resource development (wells, dams, pipelines) for agriculture; reduced productivity of rangeland; forced reduction of foundation stock; closure/limitation of public lands to grazing; high cost or unavailability of water for livestock, Christmas tree farms, forestry, raising domesticated horses, bees, fish, shellfish, or horticulture.
- Society and Public Health Drought effects associated with human, public, and social health include health-related problems related to reduced water quantity or quality, such as i ncreased concentration of c ontaminants; loss of human life (e.g., from heat stress, s uicide); increased respiratory ailments; increased disease caused by wildlife concentrations; increased human disease caused by c hanges in insect carrier populations; population migration (rural to urban a reas, migrants i nto the U nited States); loss of a esthetic values; ch ange i n daily a ctivities (non-recreational, like putting a bucket in the shower to catch water); elevated stress levels; meetings to discuss drought; communities creating drought plans; lawmakers altering penalties for violation of water restrictions; demand for higher water rates; cultural/historical discoveries from low water levels; cancellation of fundraising events; cancellation/alteration of festivals or holiday traditions; stockpiling water; public service announcements and drought information websites; protests; and conflicts within the community due to competition for water.
- Fire Drought often contributes to forest, range, rural, or urban fires, fire danger, and burning restrictions. Specific impacts include enacting or increasing burning restrictions; fireworks bans; increased fire risk; occurrence of fire (number of acres burned, number of wildfires compared to average, people displaced, etc.); state of emergency during periods of high fire danger; closure of roads or l and due to fire occurrence or risk; and expenses to state and county governments of paying firefighters overtime and paying equipment (helicopter) costs.
- **Tourism and Recreation** Drought effects associated with recreational activities and tourism include c losure of s tate h iking t rails a nd h unting a reas du e t o fire danger; w ater ac cess or navigation problems for recreation; bans on recreational activities; reduced license, p ermit, or ticket sales (e.g., hunting, fishing, ski lifts, etc.); losses related to curtailed activities (e.g., bird watching, hunt ing a nd fishing, boa ting, e tc.); reduced pa rk v isitation; a nd cancellation or postponement of sporting events.
- Water Supply and Quality Drought effects associated with water supply and water quality include dry wells; voluntary and mandatory water restrictions; changes in water rates; increasing water restrictions; increases in requests for new well permits; changes in water use due to water restrictions; greater water demand; decreases in water allocation or allotments; installation or alteration of water pumps or water intakes; changes to allowable water contaminants; water line damage or repairs due to drought stress; drinking water turbidity; change in water color or odor; declaration of drought watches or warnings; and mitigation activities.
- **Energy** Drought effects on power production, rates and revenue include production changes for both hydropower and non-hydropower providers; changes in electricity rates; revenue shortfalls and/or windfall profits; and purchase of electricity when hydropower generation is down.

- **Business and Industry** Drought effects on non-agriculture and non-tourism businesses, such as lawn care; r ecreational v ehicles or g ear d ealers; and p lant n urseries. Typical i mpacts i nclude reduction or loss of demand for goods or services; reduction in employment; variation in number of calls for service; late opening or early closure for the s eason; b ankruptcy; p ermanent store closure; and other economic impacts.
- Plants and Wildlife Drought e ffects a ssociated with unmanaged plants and wildlife, both aquatic and terrestrial, include loss of biodiversity of plants or wildlife; loss of trees from rural or urban landscapes, shelterbelts, or wooded conservation areas; reduction and degradation of fish and wildlife habitat; lack of feed and drinking water; greater mortality due to increased contact with agricultural producers as animals seek food from farms and producers are less tolerant of the intrusion; disease; increased vulnerability to predation (from species concentrated near water); migration and concentration (loss of wildlife in some a reas and too much wildlife in others); increased stress on endangered species; salinity levels affecting wildlife; wildlife encroaching into urban areas; and loss of wetlands.
- **Relief, Response, and Restrictions** Drought effects associated with disaster declarations, aid programs, requests for disaster declaration or aid, water restrictions, or fire restrictions. Examples include disaster d eclarations; aid programs; U SDA S ecretarial d isaster d eclarations; S mall Business Association disaster declarations; government relief and response programs; state-level water shortage or water emergency declarations; county-level declarations; a d eclared "state of emergency;" r equests f or d eclarations or a id; n on-profit o rganization-based r elief; w ater restrictions; fire restrictions; NWS R ed F lag w arnings; and declaration of drought watches or warnings.

Extreme Heat

According a 2014 EPA study, a total of nearly 8,000 Americans suffered heat-related deaths between 1979 and 2010. The 2012 Natural Resource Defense Council study of 40 m ajor U.S. cities showed that the historic average mortality per summer was 1,332 between 1975 and 2004. This reveals that annually more people in the U.S. die from severe summer heat than from hurricanes, lightning, tornadoes, floods, and earthquakes combined.

According to the National Climatic Data Center, a strong heat wave affected Texas in the summers of 1999, 2000, and 2011. During these heat waves, multiple counties suffered in terms of injuries and deaths, mostly to the elderly.

Table 10-1 contains t emperature su mmaries t emperature s ummaries related to ex treme h eat for the Lexington weather station. There were no documented extreme heat events in the NOAA NCDC database for Lee County. These temperatures are experienced throughout the entire planning area (City of Giddings, City of Lexington, and Lee County Unincorporated Areas).

TABLE 10-1. TEMPERATURE DATA FROM LEXINGTON WEATHER STATION													
Statistic	Years	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
High Annual Maximum	1965-2014	88	97	94	97	100	106	105	110	111	100	90	85
Low Annual Maximum	1965-2014	70	71	77	83	87	91	92	95	91	86	79	72
Average Annual Maximum	1965-2014	77.9	80.4	85.0	88.5	92.0	96.5	99.1	100.3	97.6	91.5	84.4	79.1
Average Days Annually with a Maximum Above 90°F	1948-2012	0.0	0.1	0.2	1.2	6.0	19.4	27.4	27.9	16.5	3.4	0.0	0.0

10.2.2 Location

Drought

The National Oceanic and Atmospheric Administration (NOAA) has developed several indices to measure drought impacts and severity and to map their extent and locations:

- The Palmer Crop Moisture Index measures short-term drought on a weekly scale and is used to quantify drought's impacts on agriculture during the growing season. Figure 10-5 shows this index for the week ending in March 28, 2015.
- The Palmer Z Index measures short-term drought on amonthly scale. Figure 10-6 shows this index for March 2015.
- The P almer D rought I ndex (PDI) m easures the d uration and intensity of long-term droughtinducing circulation patterns. Long-term drought is cumulative, so the intensity of drought during a g iven month is de pendent on t he c urrent w eather patterns pl us the c umulative patterns of previous months. Weather patterns can change quickly from a long-term drought pattern to a longterm wet pattern, and the PDI can respond fairly rapidly. Figure 10-7 and Figure 10-8 show this index for March 2015 and May 2015 to show the change in PDI after the May 2015 rain.
- The hydrological impacts of drought (e.g., reservoir levels, groundwater levels, etc.) take longer to develop and it takes longer to recover from them. The Palmer Hydrological Drought Index (PHDI), another long-term index, was developed to quantify hydrological effects. The P HDI responds more slowly to changing conditions than the PDI. Figure 10-9 shows this index for March 2015.
- While the Palmer indices consider precipitation, evapotranspiration and runoff, the Standardized Precipitation Index (SPI) considers only precipitation. In the SPI, an index of zero indicates the median precipitation amount; the index is negative for drought and positive for wet conditions. The SPI is computed for time scales ranging from 1 month to 24 months. Figure 10-10 shows the 24-month SPI map through the end of February 2015.

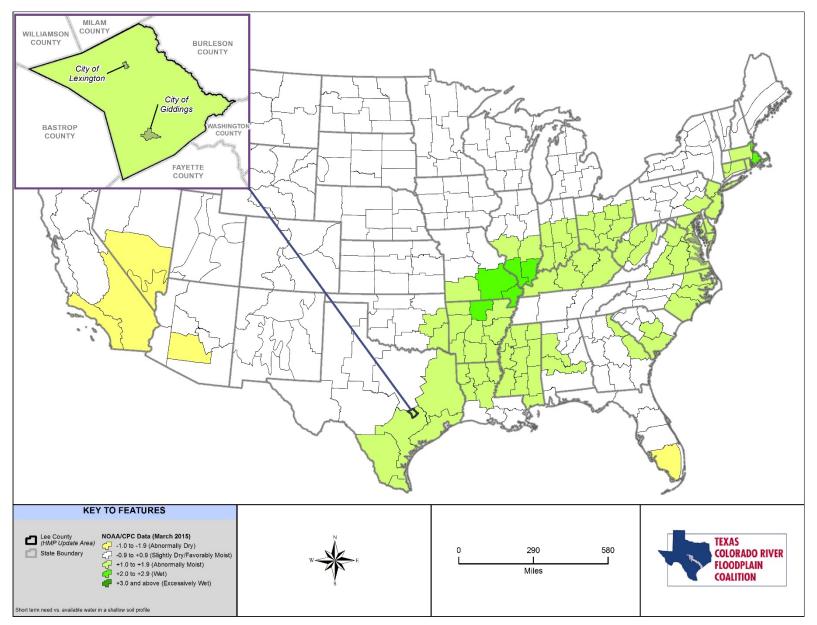


Figure 10-5. Crop Moisture Index (Week Ending March 28, 2015)

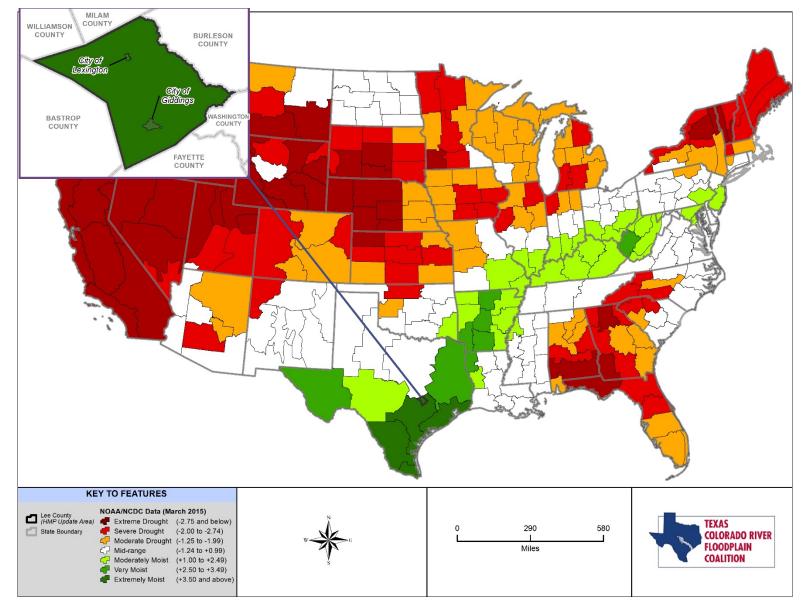


Figure 10-6. Palmer Z Index Short-Term Drought Conditions (March 2015)

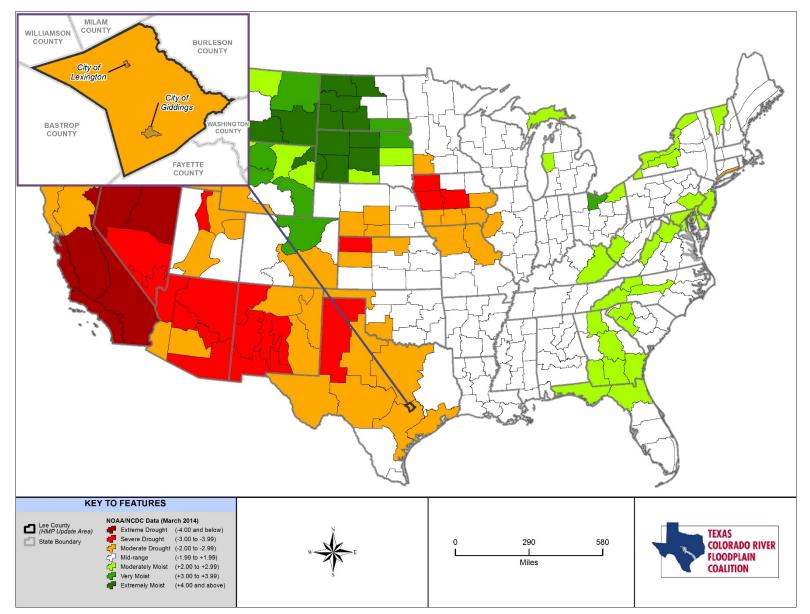


Figure 10-7. Palmer Drought Severity Index (March 2015)

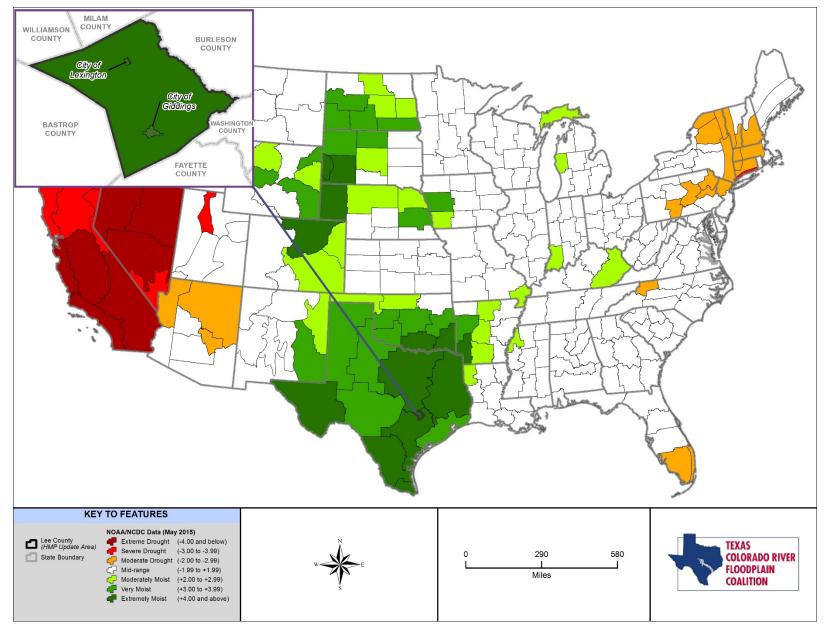


Figure 10-8. Palmer Drought Severity Index (May 2015)

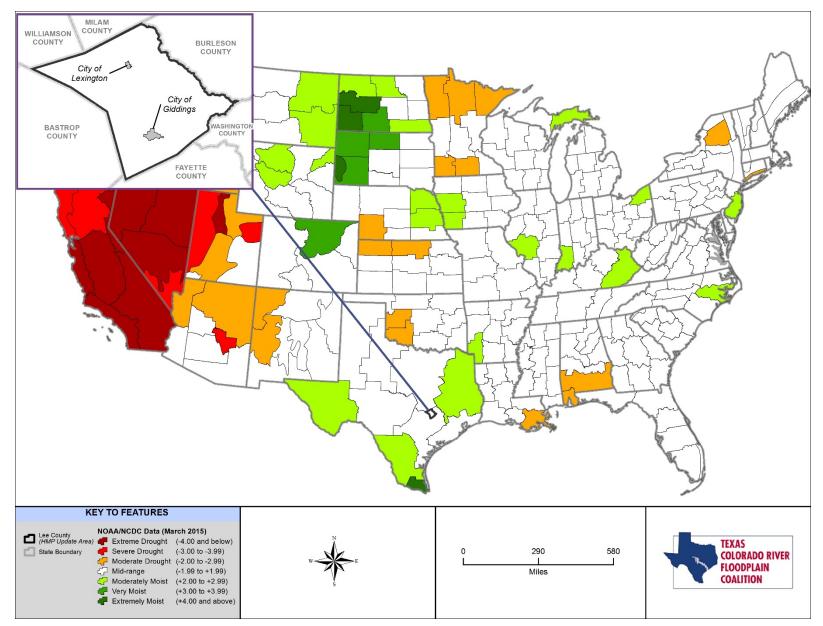


Figure 10-9. Palmer Hydrological Drought Index Long-Term Hydrologic Conditions (March 2015)

Figure 10-10. 24-Month Standardized Precipitation Index (through February 2015)

Because of Texas's humid sub-tropical to semi-arid conditions, drought is a regular but unpredictable occurrence in the state. However, because of natural variations in climate and precipitation sources, it is rare for all of Texas to be deficient in moisture at the same time. Single season droughts over some portion of the state are quite common. From 1950 to 1957, Texas experienced the most severe drought in recorded history. By the time the drought ended, 244 of Texas' 254 counties had been declared federal disaster areas. In 2011, Texas experienced its most intense single-year drought in recorded history.

Droughts occur regularly in South Central Texas and are a normal condition. However, they can vary greatly in their intensity and duration. The entire HMP update area is at risk to drought conditions. Drought is one of the few hazards that has the potential to directly or indirectly impact every person in the county and participating communities as well as adversely affect the local economy. Table 10-2 lists past drought events for Lee County and the participating communities in this HMP update.

TABLE 10-2. HISTORIC DROUGHT EVENTS IN LEE COUNTY (1996-2014)								
	Estimated D	amage Cost						
Date	Property	Crops	Injuries	Deaths				
April 1996	\$0	\$0	0	0				
May 1996	\$0	\$0	0	0				
June 1996	\$0	\$0	0	0				
July 1996	\$0	\$0	0	0				
August 1996	\$0	\$0	0	0				
July 1996	\$0	\$0	0	0				
August 1996	\$0	\$0	0	0				
July 2000	\$0	\$0	0	0				
August 2000	\$0	\$0	0	0				
September 2000	\$0	\$0	0	0				
October 2000	\$0	\$0	0	0				
May 2011	\$0	\$0	0	0				
June 2011	\$0	\$0	0	0				
July 2011	\$0	\$0	0	0				
August 2011	\$0	\$0	0	0				
September 2011	\$0	\$0	0	0				
October 2011	\$0	\$0	0	0				
December 2011	\$0	\$0	0	0				
January 2012	\$0	\$0	0	0				
February 2012	\$0	\$0	0	0				
June 2012	\$0	\$0	0	0				
November 2012	\$0	\$0	0	0				
December 2012	\$0	\$0	0	0				
February 2013	\$0	\$0	0	0				
March 2013	\$0	\$0	0	0				
April 2013	\$0 \$0	\$0 \$0	0	0				
May 2013	\$0 \$0	\$0 \$0	0	0				
June 2013	\$0 \$0	\$0 \$0	0	0				
July 2013	\$0 \$0	\$0 \$0	0	0				
August 2013	\$0 \$0	\$0 \$0	0	0				

HIST	TABLE 10-2. HISTORIC DROUGHT EVENTS IN LEE COUNTY (1996-2014)								
	Estimated Damage Cost								
Date	Property	Crops	Injuries	Deaths					
Estimated damage costs for 2011 to 20	13 not available as of 09/2015								

Extreme Heat

The entire planning area is at risk to extreme heat events; however, these events may be exacerbated in urban a reas, where r educed a ir flow, r educed v egetation, and increased g eneration of waste he at can contribute to temperatures that are several degrees higher than in surrounding rural or less urbanized areas. This phenomenon is known as urban heat island effect. This can happen in the City of Giddings and City of Lexington.

The record highs for Texas occur during May through October. Lee County (and participating communities) experiences an average of 20 days with temperatures 100°F and above during these months, according to data recorded by the NWS between 2000 and 2014. During 2011, Texas experienced the hottest summer in U.S. hi story w ith a n average temperature of 86.8 °F. L ee C ounty (and pa rticipating c ommunities) experienced more than 60 days with temperatures 100°F and above in 2011. Figure 6-3 shows the annual average maximum temperature distribution in Texas.

Even though the NCDC storm events database doesn't list any documented specific past events for extreme heat, the local participating communities in this HMP update report that extreme heat days do occur a few days in the year during the summer months.

10.2.3 Frequency

Drought

The probability of a future drought in Lee County and participating communities is likely, with an event possible in the next 3 years or less According to information from the National Climatic Data Center, Lee County and participating communities had 5 documented drought years between 1996 and 2014 (in 1996, 2000, 2011, 2012, and 2013). None of these drought events caused reported damage to property and crops, or resulted in injuries or deaths. Based on this historical information, the probability of a drought occurring in any given year is 28% (about 1 in 3 years). The same frequency (1 in 3 years) applies to the future probability.

Short duration droughts occur much more frequently. Various studies indicate that drought occurrence in Texas is expected to increase in frequency and will continue be an inevitable factor in the climate of Texas. Table 10-2 lists historic drought events. Furthermore, since drought affects a large area (more regional than city specific) historical analysis are applied to all participating communities equally.

Extreme Heat

On a verage, L ee C ounty and participating c ommunities h ave experienced 10 2 days per y ear w here temperatures exceed 90°F so the frequency of extreme heat events is expected to be very likely in any given year (per N OAA's R egional C limate C enter d ata and l ocal r ecords). L ee C ounty and p articipating communities can expect similar numbers in the future (102 days per year and highly likely).

10.2.4 Severity

Drought

Drought impacts are wide-reaching and may be economic, environmental, or societal. The most significant impacts associated with drought in Texas are those related to water intensive activities such as agriculture, wildfire protection, municipal usage, commerce, tourism, recreation, and wildlife preservation. An ongoing drought may leave an area more prone to wildfires. Drought conditions can also cause soil to compact, increasing an area's susceptibility to flooding, and reduce vegetation cover, which exposes soil to wind and erosion. A r eduction of electric p ower g eneration a nd w ater quality d eterioration a re a lso p otential problems. Drought impacts increase with the length of a drought, as carry-over supplies in reservoirs are depleted and water levels in streams and groundwater decline.

According to the information in this hazard profile, drought impacts on Lee County could be considered moderate. Moderate drought typically means less than 25% to 50% of property (mainly agricultural) is severely d amaged; i njuries/illnesses a re treatable or do not result in permanent d isability; c rop fields become withered; cattle herds are thinned; and for coastal communities, fishermen net light loads. Due to the low probability of severe d rought, the ov erall s ignificance is considered moderate with m edium potential impact. Drought can have a widespread impact on the environment and the economy, depending upon its severity, although it typically does not result in loss of life or damage to property, as do other natural disasters. The National Drought Mitigation Center uses three categories to describe likely drought impacts:

- Agricultural Drought threatens crops that rely on natural precipitation.
- Water supply Drought threatens supplies of water for irrigated crops and for communities.
- Fire hazard Drought i ncreases the threat of wildfires from dr y c onditions i n f orest a nd rangelands.

On average, the nationwide annual impacts of drought are greater than the impacts of any other natural hazard. They are estimated to be between \$6 billion and \$8 billion annually in the United States and occur primarily in the agriculture, transportation, recreation and tourism, forestry, and energy sectors. Social and environmental impacts are also significant, although it is difficult to put a precise cost on these impacts.

The severity of a drought depends on the degree of moisture deficiency, the duration, and the size and location of the affected area. The longer the duration of the drought and the larger the area impacted, the more severe the potential impacts. Droughts are not usually associated with direct impacts on people or property, but they can have significant impacts on agriculture, which can impact people indirectly.

When measuring the severity of droughts, analysts typically look at economic impacts on a planning area. A drought directly or indirectly impacts all people in affected areas. All people could pay more for water if utilities increase their rates due to shortages. Agricultural impacts can result in loss of work for farm workers and those in related food processing jobs. Other water- or electricity-dependent industries are commonly forced to shut down all or a portion of their facilities, resulting in further layoffs. A drought can harm recreational companies that use water (e.g., swimming pools, water parks, and river rafting companies) as well as landscape and n ursery b usinesses because people will not invest in new plants if water is not available to sustain them.

Drought g enerally d oes n ot a ffect g roundwater so urces a s q uickly as s urface w ater su pplies, b ut groundwater supplies generally take longer to recover. Reduced precipitation during a drought means that groundwater supplies are not replenished at a normal rate. This can lead to a reduction in groundwater levels and problems such as reduced pumping capacity or wells going dry. Shallow wells are more susceptible than deep wells. Reduced replenishment of groundwater affects streams. Much of the flow in streams comes from groundwater, especially during the summer when there is less precipitation and after snowmelt ends. Reduced groundwater levels mean that even less water will enter streams when steam flows are lowest.

Additionally, there is increased danger of wildfires associated with most droughts. Millions of board feet of timber have been lost due to drought, and in many cases erosion has occurred, which caused serious damage to aquatic life, irrigation, and power production by heavy silting of streams, reservoirs, and rivers.

Extreme Heat

Drought also is often accompanied by extreme heat. When temperatures reach 90°F and above, people are vulnerable to heat cramps, heat exhaustion, and heat stroke. Pets and livestock are also vulnerable to heat-related injuries. Crops can be vulnerable as well.

Based on the information in t his ha zard p rofile, the m agnitude/severity of extreme t emperatures is considered moderate. This is defined as less than 25 to 50% of property (mainly agricultural) is severely damaged, or injuries/illnesses are treatable or do not result in permanent disability. Due to the expansive nature of soils in this area, extreme heat could pose foundation issues. Overall significance is considered medium with moderate potential impact.

10.2.5 Warning Time

Drought

Droughts are climatic patterns that occur over long periods of time. Only generalized warnings can take place due to the numerous variables that scientists have not pieced together well enough to make accurate and precise predictions. Empirical studies conducted over the past century have shown that meteorological drought is never the result of a single cause. It is the result of many causes, often synergistic in nature.

Scientists at this time do not know how to predict drought more than a month in advance for most locations. Predicting dr ought de pends on the a bility t o f orecast pr ecipitation and temperature. A nomalies o f precipitation and temperature may last from several months to several decades. How long these anomalies last depends on interactions between the atmosphere and the oceans, s oil moisture and land surface processes, topography, internal dynamics, and the accumulated influence of weather systems on the global scale.

Texas is semi-arid to humid sub-tropical, thus, drought is a regular and natural occurrence in the state. The main source of water supply in the state is precipitation and much of this occurs in the spring and fall. Some snowfall does occur in the wintertime. Although drought conditions are difficult to predict, low levels of spring precipitation may act as an indicator that drought conditions are occurring.

Extreme Heat

NOAA issues watch, warning, and advisory information for extreme heat. Extreme heat is a regular and natural occurrence in the state.

10.3 SECONDARY HAZARDS

Drought

The secondary hazard most commonly associated with drought is wildfire. A prolonged lack of precipitation dries out vegetation, which be comes increasingly susceptible to ignition as the duration of the drought extends. According to the *State of Texas 2014 Emergency Management Plan* (Drought Annex), economic impacts may also o ccur for industries that are water intensive such as ag riculture, wildfire protection, municipal us age, c ommerce, tourism, r ecreation and wildfire preservation. A dditionally, a reduction of electric power generation and water quality deterioration are also potential effects. Drought conditions can also cause soil to compact, decreasing its ability to absorb water, making an area more susceptible to flash flooding and erosion. A drought may also increase the speed at which dead and fallen trees dry out and become more potent fuel sources for wildfires. Drought may also weaken trees in areas already affected by insect infestations, causing more extensive damage to trees and increasing wildfire risk, at least temporarily. An ongoing drought that severely inhibits natural plant growth cycles may impact critical wildlife habitats.

Drought impacts increase with the length of a drought, as carry-over supplies in reservoirs are depleted and water levels in groundwater basins decline.

Extreme Heat

Excessive heat events can cause failure of motorized systems such as ventilation systems used to control temperatures inside buildings. The lack of air conditioning in businesses and homes can exacerbate existing health conditions, particularly in senior citizens.

10.4 CLIMATE CHANGE IMPACTS

The long-term e ffects of climate change on r egional water r esources a re unk nown, but g lobal water resources are already experiencing the following stresses without climate change:

- Growing populations
- Increased competition for available water
- Poor water quality
- Environmental claims
- Uncertain reserved water rights
- Groundwater overdraft
- Aging urban water infrastructure

With a warmer climate, droughts could become more frequent, more severe, and longer-lasting. From 1987 to 1 989, 1 osses from dr ought i n t he U.S. t otaled \$39 b illion (Congressional O ffice of Technology Assessment [OTA] 1993). More frequent extreme events such as droughts could end up being more cause for concern than the long-term change in temperature and precipitation averages.

The best advice to water resource managers regarding climate change is to start addressing current stresses on water supplies and build flexibility and robustness into any system. Flexibility helps to ensure a quick response to changing conditions, and robustness helps people prepare for and survive the worst conditions. With this approach to planning, water system managers will be better able to adapt to the impacts of climate change.

10.5 EXPOSURE

Because droughts cannot be directly modeled in HAZUS, annualized losses were estimated using geographic information system- (GIS) based analysis, historical data (frequency and damage) analysis, and statistical risk ass essment m ethodology. E vent frequency, s everity i ndicators, ex pert opinions, and historical knowledge of the region were used for this assessment. The primary data source was the HAZUS 2.2 data inventory (updated 2010 U .S. Census data and 2014 R S Means S quare F oot Costs), and 2012 USDA's Census of Agriculture augmented with state and federal datasets as well as the National Drought Mitigation Center reports.

All people, property, and environments in the planning area would be exposed to some degree to the impacts of moderate to extreme drought conditions and extreme heat. Populations living in densely populated urban areas are likely to be more exposed to extreme heat events. Furthermore, farms and agriculture will be greatly impacted by drought and extreme temperature. For drought, Figure 10-11 (USDA's 2012 Census of Agriculture) profiles the county's agriculture use. By applying historical averages on losses and events (probability) to current economic totals (HAZUS structure inventory) and agricultural values (also from HAZUS), the exposure rate for HMP update area is approximately \$83 million (See Table 10-5). This number is for the entire planning area. Even though most farmlands are usually outside the city limits, droughts still impact local communities economically.

Table 10-3 lists the structures and populations most exposed to drought and extreme heat.

TABLE 10-3. EXPOSED STRUCTURES AND POPULATION FOR DROUGHT										
		Structures and Population Affected								
Jurisdiction	Residential	Commercial	Other *	Total Structures	Total Population					
City of Giddings	1,590	62	22	1,674	1,473					
City of Lexington	524	8	1	533	336					
Unincorporated Area	4,921	16	17	4,954	2,536					
Planning Area Total	7,035	86	40	7,161	4,345					

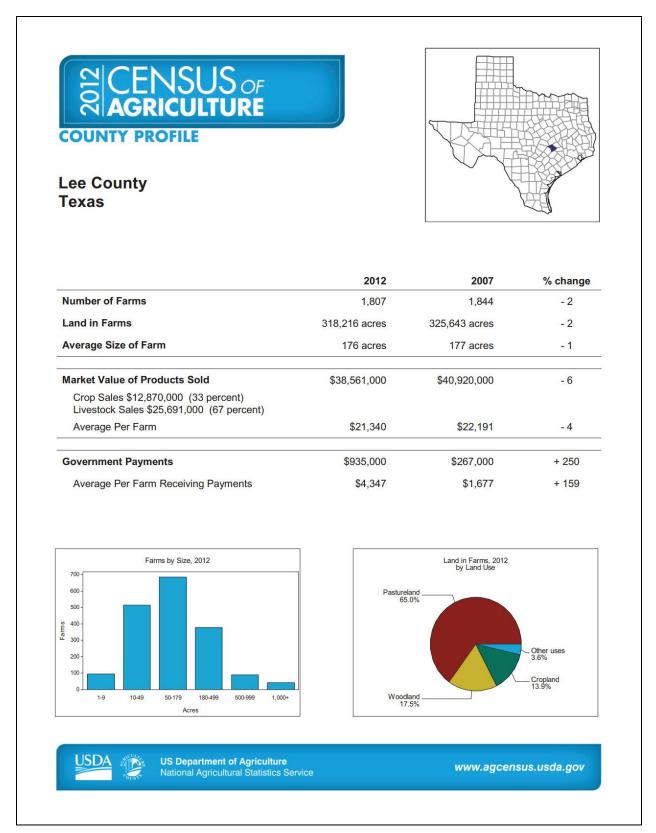


Figure 10-11. USDA Census of Agriculture Lee County Profile 2012

10.6 VULNERABILITY

Drought produces a complex web of impacts that spans many sectors of the economy and reaches well beyond the area experiencing physical drought. This complexity exists because water is integral to the ability to produce goods and provide services. Drought can affect a wide range of economic, environmental, and social activities. The vulnerability of an activity to the effects of drought usually depends on its water demand, how the demand is met, and what water supplies are available to meet the demand. Extreme heat can exacerbate the effects of drought.

Because droughts cannot be directly modeled in HAZUS, annualized losses were estimated using geographic information system- (GIS) based analysis, historical data (frequency and damage) analysis, and statistical risk ass essment m ethodology. E vent frequency, s everity i ndicators, ex pert opinions, and historical knowledge of the region were used for this assessment. The primary data source was the HAZUS inventory data (updated with 2010 Census Data and 2014 RS Means Square Foot Costs), and the 2012 Census of Agriculture augmented with state and federal data sets as well as the National Drought Mitigation Center reports and local knowledge.

10.6.1 Population

Drought

The planning partnership has the ability to minimize any impacts on residents and water consumers in the county should several consecutive dry years occur. No significant life or health impacts are anticipated as a result of drought within the planning area

Extreme Heat

According to the EPA, the individuals with the following characteristics are typically at greater risk to the adverse effects of excessive heat events: individuals with physical or mobility constraints, cognitive impairments, economic constraints, and social isolation.

See Table 10-4 for populations most vulnerable to extreme heat and drought per jurisdiction.

TABLE 10-4. VULNERABLE POPULATION									
JurisdictionYouth Population (<16)									
City of Giddings	1,473	30.18	706	14.46	366	7.50			
Town of Lexington	336	28.55	167	14.19	74	6.29			
Lee County Unincorporated Area	2,536	24.03	1,749	16.57	641	6.07			
Lee County Total	4,345	26.16	2,622	15.78	1,081	6.51			

10.6.2 Property

Drought

No s tructures will be d irectly a ffected by dr ought c onditions, though s ome s tructures m ay be come vulnerable t o wildfires, w hich a re m ore likely f ollowing ye ars of drought. Droughts can a lso h ave significant impacts on landscapes, structure foundation issues (because of soil expansion and contraction) which could cause a financial burden to property owners. However, these impacts are not considered critical in planning for impacts from the drought hazard.

Loss estimations for drought are not based on damage functions, because no such damage functions have been generated. Instead, loss estimates were developed representing projected damages (annualized loss) on hi storical e vents, s tatistical a nalysis, a nd pr obability f actors. T hese w ere applied t o t he e xposed agriculture values of the participating communities to create an annualized loss (Table 10-5).

TABLE 10-5. LOSS ESTIMATES FOR DROUGHT EVENTS								
Jurisdiction	Exposed Value (\$)	Annualized Loss (\$)	Annualized Loss (%)					
City of Giddings	24,134,769	3,496	0.01					
City of Lexington	5,901,316	206	0.00					
Unincorporated Areas or Other	52,904,455	935,859	1.77					
Lee County Total	82,940,540	939,561	1.13					

Extreme Heat

Typically t he only i mpact e xtreme he at has on g eneral buildings tock is increased de mand on a ir conditioning equipment, which in turn may cause strain on electrical systems. Due to the expansive nature of soils in this area, extreme heat also could pose some foundation issues. It costs an average homeowner at least \$5000 to fix or repair structure foundation issues.

Vulnerability Narrative

All participating communities are at risk to drought and extreme heat events. In addition to the documented impacts from the Drought Impact Reporter listed in Chapter 10.2.1, the participating communities also experience the following for both drought and extreme heat events:

- **City of Giddings** The City of Giddings will be at a greater risk of rolling blackouts during an extreme heat event due to high usage. This would have a greater effect on the young, elderly, and economically disadvantaged populations that may not have the means to respond to such an event. Due to the rural landscape of the area and dry climate, during times of drought and extreme heat events, water restrictions could be enforced. Lawn watering and other outdoor water activities will have to be scheduled and rationed. Community members without access to emergency messages (such as C APCOG Reverse 911) co uld miss vital information to extreme heat events. Any residents or structures that do not have standing drought and extreme event plans in place (such as implementation of water conservation measures and the maintenance of underground water lines) are more vulnerable.
- **Town of Lexington** The Town of Lexington will be at a greater risk of rolling blackouts during an extreme heat event due to high usage. This would have a greater effect on the young, elderly, and economically disadvantaged populations that may not have the means to respond to such an

event. Uninformed residents and business owners on the effects of drought on their properties and water conservation tactics are more vulnerable. Residents unaware of the risk or hazards associated with d rought or u naware of w hat actions t o t ake d uring an event ar e a lso m ore vulnerable.

• Lee County (Unincorporated Area) – Lee County Unincorporated Areas will be at a greater risk of rolling blackouts during an extreme heat event due to high usage. This would have a greater effect on the young, elderly, and economically disadvantaged populations that may not have the means to r espond to such an event. More r ural a reas (especially those not near groundwater resources) are more v ulnerable s ince t hey are further r emoved and r emote from d irect water resources. Communities who do not integrate mitigation measures for affected areas increase their vulnerability. Residents who are unaware of their risk or the hazards associated with drought are more at risk as well.

Community Perception of Vulnerability

See front page of current chapter for a summary of ha zard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

10.6.3 Critical Facilities

Drought

Critical facilities as defined for this plan will continue to be operational during a drought. Critical facility elements such as landscaping may not be maintained due to limited resources, but the risk to the planning area's critical facilities inventory will be largely aesthetic. For example, when water conservation measures are in place, landscaped areas will not be watered and may die. These aesthetic impacts are not considered significant.

Extreme Heat

Power outages may occur as a r esult of extreme heat events. A dditionally, transportation systems may experience disruption in services. It is common in Texas for concrete pavements to experience "blowouts or heaves" both on local highway and the higher volume parkway and interstate systems. Blowouts occur when pavements expand and cannot function properly within their allotted spaces. Pavement sections may rise up several inches during such events. These conditions can cause motor vehicle accidents in their initial stages and can shut down traffic lanes or roadways entirely until such times as the conditions are mitigated.

10.6.4 Environment

Environmental losses from drought are associated with damage to plants, animals, wildlife habitat, and air and water quality; forest and range fires; degradation of landscape quality; loss of biodiversity; and soil erosion. Some of the effects are short-term and conditions quickly return to normal following the end of the drought. Other environmental effects linger for some time or may even become permanent. Wildlife habitat, for example, may be degraded through the loss of wetlands, lakes, and vegetation. However, many species will eventually recover from this temporary aberration. The degradation of landscape quality, including increased s oil erosion, m ay l ead t o a m ore permanent loss of biological productivity. A Ithough environmental losses are difficult to quantify, growing public awareness and concern for environmental quality has forced public officials to focus greater attention and resources on these effects.

10.6.5 Economic Impact

Economic impact will be largely associated with industries that use water or depend on water for their business. For example, landscaping businesses were affected in the droughts of the past as the demand for

service si gnificantly d eclined b ecause l andscaping w as n ot w atered. A gricultural industries w ill b e impacted if water usage is restricted for irrigation. The tourism sector may also be impacted.

10.7 FUTURE TRENDS IN DEVELOPMENT

Each municipal planning partner in this effort has an established comprehensive plan or policies directing land use and dealing with issues of water supply and the protection of water resources. These plans provide the capability at the local municipal level to protect future development from the impacts of drought. All planning p artners r eviewed t heir p lans u nder the capability ass essments p erformed f or t his e ffort. Deficiencies identified by these reviews can be identified as mitigation initiatives to increase the capability to de al with future trends in development. Vulnerability to drought will increase as population growth increases, putting more demands on e xisting water supplies. Future water use planning should consider increases in population as well as potential impacts of climate change.

10.8 SCENARIO

An extreme multi-year drought could impact the region with little warning. Combinations of low precipitation and unusually high temperatures could occur over several consecutive years. Intensified by such conditions, extreme wildfires could break out throughout the planning area, increasing the need for water. Surrounding communities, also in drought conditions, could increase their demand for water supplies relied upon by the planning partnership, causing social and political conflicts. If such conditions persisted for several years, the economy of Lee County could experience setbacks, especially in water dependent industries.

10.9 ISSUES

The following are extreme heat and drought-related issues:

- Identification and development of alternative water supplies.
- Utilization of groundwater recharge techniques to stabilize the groundwater supply.
- The probability of increased drought frequencies and durations due to climate change.
- The promotion of active water conservation even during non-drought periods.
- Increasing vulnerability to drought over time as demand for water from different sectors increases.
- The effects of climate change may result in an increase in frequency of extreme heat events.
- The effects of recent droughts have exposed the vulnerability of the planning areas economy to drought events.
- Environmental and erosion control impact analysis for transportation projects.
- Wildlife habitat management for landowners.
- Human health impacts from droughts and extreme heat.
- Monitoring and evaluating risks to power supply and water rights.
- Development of mitigation- or response-based state drought plans.

CHAPTER 11. EARTHQUAKE

EARTHQUAKE RANKING		
Lee County	Low	
City of Giddings	Low	
City of Lexington	Low	

11.1 GENERAL BACKGROUND

11.1.1 How Earthquakes Happen

An earthquake is a sudden release of energy from the earth's c rust that cr eates se ismic w aves. Tectonic plates become stuck, putting a st rain on the ground. When the strain becomes so great that rocks give way, fault lines occur. At the Earth's surface, earthquakes may manifest themselves b y a sh aking o r displacement of the ground, which may lead to loss of life and destruction of property. Size of an earthquake is ex pressed q uantitatively as m agnitude and l ocal strength of shaking as intensity. The inherent size of an ear thquake i s co mmonly ex pressed u sing a magnitude. For a more detailed description of

DEFINITIONS

Earthquake — The shaking of the ground caused by an abrupt shift of rock along a fracture in the earth or a contact zone between tectonic plates.

Epicenter — The point on the earth's surface directly above the hypocenter of an earthquake. The location of an earthquake is commonly described by the geographic position of its epicenter and by its focal depth.

Fault — A fracture in the earth's crust along which two blocks of the crust have slipped with respect to each other.

Focal Depth — The depth from the earth's surface to the hypocenter.

Hypocenter — The region underground where an earthquake's energy originates.

Liquefaction — Loosely packed, water-logged sediments losing their strength in response to strong shaking, causing major damage during earthquakes.

seismic/earthquake hazards visit FEMA's web site on hazards, http://www.fema.gov/hazard.

Earthquakes tend to reoccur along faults, which are zones of weakness in the crust. Even if a fault zone has recently experienced an earthquake, there is no guarantee that all the stress has been relieved. Another earthquake could still occur.

Geologists classify faults by their relative hazards. Active faults, which represent the highest hazard, are those that have ruptured to the ground surface during the Holocene period (about the last 11,000 years). Potentially active faults are those that displaced layers of rock from the Quaternary period (the last 1,800,000 years). Determining if a fault is "active" or "potentially active" depends on geologic evidence, which may not be available for every fault. Although there are probably still some unrecognized active faults, nearly all the movement between the two plates, and therefore the majority of the seismic hazards, are on the well-known active faults.

Faults are more likely to have earthquakes on them if they have more rapid rates of movement, have had recent earthquakes along them, experience greater total displacements, and are aligned so that movement can relieve accumulating tectonic stresses. A direct relationship exists between a fault's length and location and its ability to generate damaging ground motion at a given site. In some areas, smaller, local faults produce lower magnitude quakes, but ground shaking can be strong, and damage can be significant as a result of the fault's proximity to the area. In contrast, large regional faults can generate great magnitudes but, because of their distance and depth, may result in only moderate shaking in the area.

11.1.2 Earthquake Classifications

Earthquakes are typically classified in one of two ways: by the amount of energy released, measured as **magnitude**; or by the impact on people and structures, measured as **intensity**.

Magnitude

Currently the most commonly used magnitude scale is the moment magnitude (M_w) scale, with the follow classifications of magnitude:

- Great $M_w > 8$
- Major $M_w = 7.0 7.9$
- Strong $M_w = 6.0 6.9$
- Moderate $M_w = 5.0 5.9$
- Light $M_w = 4.0 4.9$
- Minor $M_w = 3.0 3.9$
- Micro $M_w < 3$

Estimates of moment magnitude roughly match the local magnitude s cale (ML) c ommonly c alled the Richter scale. One advantage of the M_w scale is that, unlike other magnitude scales, it does not saturate at the upper end. That is, there is no value beyond which all large earthquakes have about the same magnitude. For this reason, M_w scale is now the most often used estimate of large earthquake magnitudes.

Intensity

Currently the most commonly used intensity scale is the modified Mercalli intensity scale, with ratings defined as follows (U.S. Geological Survey [USGS] 1989):

- I. Not felt except by a very few under especially favorable conditions.
- II. Felt only by a few persons at rest, especially on upper floors of buildings.
- III. Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it is an earthquake. Standing cars may rock slightly. Vibrations similar to the passing of a truck. Duration estimated.
- IV. Felt indoors by many, outdoors by few during the day. At night, some a wakened. Dishes, windows, doors disturbed; walls make cracking so und. S ensation like a h eavy truck st riking building. Standing cars rocked noticeably.
- V. Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks may stop.
- VI. Felt by all; many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight.
- VII. Damage negligible in buildings of good design and construction; slight in well-built ordinary structures; considerable in poorly built or badly designed structures. Some chimneys broken.
- VIII. Damage slight in specially designed structures; considerable damage in ordinary buildings with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned.
- IX. Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations.

- X. Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations. Rails bent.
- XI. Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent greatly.
- XII. Damage total. Lines of sight and level are distorted. Objects thrown into the air.

11.1.3 Ground Motion

Earthquake hazard assessment is also based on expected ground motion. This involves determining the annual probability that certain ground motion accelerations will be exceeded, then summing the annual probabilities over the time period of interest. The most commonly mapped ground motion parameters are the horizontal and vertical peak ground accelerations (PGA) for a given soil or rock type. Instruments called accelerographs record levels of ground motion due to earthquakes at stations throughout a region. These readings are recorded by state and federal agencies that monitor and predict seismic activity.

Maps of PGA values form the basis of seismic zone maps that are included in building codes such as the International Building Code. Building codes that include seismic provisions specify the horizontal force due to lateral acceleration that a building should be able to withstand during an earthquake. PGA values are directly r elated to t hese l ateral forces t hat could d amage "sh ort-period s tructures" (e.g., s ingle-family dwellings). Longer-period response components create the lateral forces that damage larger structures with longer n atural pe riods (apartment b uildings, f actories, hi gh-rises, b ridges). Table 11-1 lists d amage potential and perceived shaking by PGA factors, compared to the Mercalli scale.

Modified		Potential Structure Damage		Estimated PGA ^a
Mercalli Scale	Perceived Shaking	Resistant Buildings	Vulnerable Buildings	(%g)
Ι	Not Felt	None	None	<0.17%
II to III	Weak	None	None	0.17% - 1.4%
IV	Light	None	None	1.4% - 3.9%
V	Moderate	Very Light	Light	3.9% - 9.2%
VI	Strong	Light	Moderate	9.2% - 18%
VII	Very Strong	Moderate	Moderate/Heavy	18% - 34%
VIII	Severe	Moderate/Heavy	Heavy	34% - 65%
IX	Violent	Heavy	Very Heavy	65% - 124%
X to XII	Extreme	Very Heavy	Very Heavy	>124%

Sources: USGS, 2008; USGS, 2010

11.1.4 Effect of Soil Types

The impact of a n e arthquake on s tructures and infrastructure is largely a function of ground shaking, distance from the source of the quake, and liquefaction. Liquefaction is a secondary effect of an earthquake in which soils lose their shear strength and flow or behave as liquid, thereby damaging structures that derive their s upport from the soil. Liquefaction generally oc curs in s oft, un consolidated s edimentary s oils. A program called the National Earthquake Hazard Reduction Program (NEHRP) creates maps based on soil characteristics to h elp id entify lo cations s ubject to liquefaction. Table 11-2 summarizes N EHRP so il classifications. NEHRP Soils B and C typically can sustain ground shaking without much effect, dependent

on the earthquake magnitude. The areas that are commonly most affected by ground shaking have NEHRP
Soils D, E, and F. In general, these areas are also most susceptible to liquefaction.

	TABLE 11-2. NEHRP SOIL CLASSIFICATION SYSTEM	
NEHRP Soil Type	Description	Mean Shear Velocity to 30 meters (meters per second)
А	Hard Rock	1,500
В	Firm to Hard Rock	760-1,500
С	Dense Soil/Soft Rock	360-760
D	Stiff Soil	180-360
Е	Soft Clays	< 180
F	Special Study Soils (liquefiable soils, sensitive clays, organic soils, soft clays >36 meters thick)	

11.2 HAZARD PROFILE

Earthquakes can last from a few seconds to over five minutes; they may also occur as a series of tremors over several days. The actual movement of the ground in an earthquake is seldom the direct cause of injury or death. Casualties generally result from falling objects and debris, because the shocks shake, damage, or demolish buildings and other structures. Disruption of communications, electrical power supplies and gas, sewer and w ater lines should be expected. E arthquakes may trigger fires, d am failures, landslides, or releases of hazardous material, compounding their disastrous effects.

Small, local faults produce lower magnitude quakes, but ground shaking can be strong and damage can be significant in areas close to the fault. In contrast, large regional faults can generate earthquakes of great magnitudes but, because of their distance and depth, they may result in only moderate shaking in an area.

The severity of earthquakes is influenced by several factors, including the depth of the quake, the geology in the area, and the soils. The severity of soil liquefaction is dependent on the soils grain size, thickness, compaction, and degree of saturation.

11.2.1 Past Events

Most past earthquakes in Texas have been of low magnitude and have mainly occurred in west Texas, or the Panhandle area. Figure 11-1 shows the location of recorded and documented earthquake events in Texas as well as the planning area. As can be seen in Figure 11-2, the probability of a severe earthquake in Lee County and participating communities is low. A ccording to the 2013 State of Texas Hazard Mitigation Plan, the probability of an earthquake in the Southern Region of Texas is considered rare. This includes Lee County and participating communities although a small event is possible, it would pose little to no risk for the area. According to the USGS Earthquake Hazard Program, no earthquakes have been recorded in Lee County and the participating communities since 1847, (the earliest date data are available).

11.2.2 Location

While Texas does face some earthquake hazard, this hazard is very small in comparison to many other states. The biggest threat appears to be from the New Madrid fault system in Missouri, a system powerful enough to pose a risk to the north Texas area. Two regions, near El Paso and in the Panhandle, should expect earthquakes with magnitudes of approximately 5.5 to 6.0 to occur every 50 to 100 years, with even larger earthquakes possible. In Central Texas, the hazard is generally low, but residents should be aware that small earthquakes can occur, including some that are theoretically triggered by oil or gas production. Elsewhere in Texas, earthquakes are exceedingly rare. However, the hazard level is not zero anywhere in Texas; small earthquakes are possible almost anywhere, and all regions face possible ill effects from very

large, distant earthquakes. Figure 11-2 shows earthquake hazard threats in the U.S. Figure 11-1 shows the location of recorded past events and Figure 11-2 shows probability of earthquake hazard threats in the U.S.

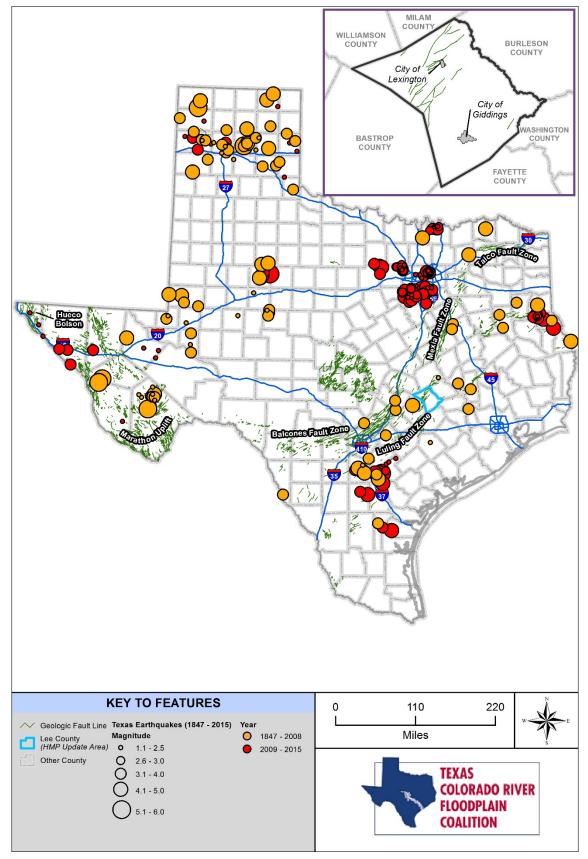


Figure 11-1. Texas Earthquakes (1847-2015)

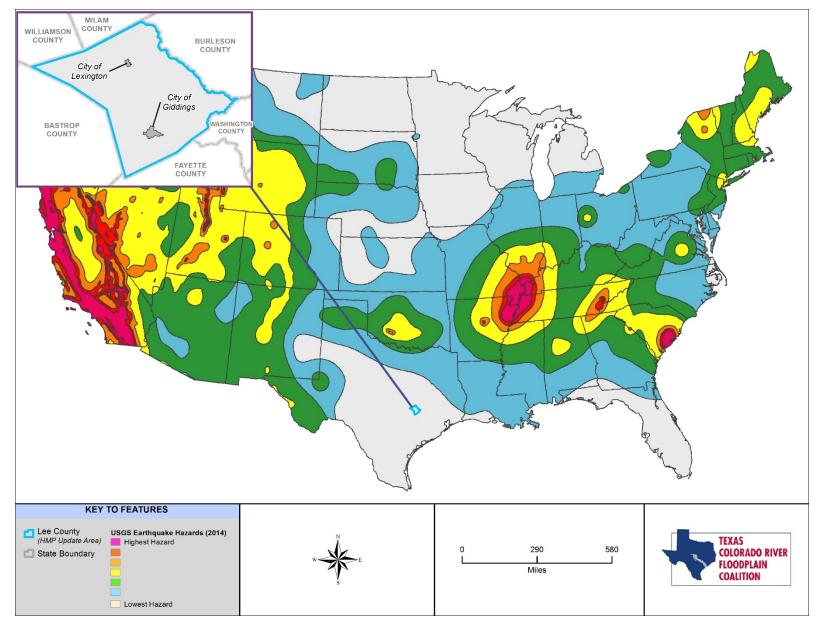


Figure 11-2. Probabilistic Earthquake Hazard Map for the U.S.

Faults have been classified based on the geologic time frame of their latest suspected movement (in order of activity occurrence, most recent is listed first):

- H Holocene (within past 15,000 years)
- LQ Late Quaternary (15,000 to 130,000 years ago)
- MLQ Middle to Late Quaternary (130,000 to 750,000 years ago)
- Q Quaternary (approximately past 2 million years)
- LC Late Cenozoic (approximately past 23.7 million years)

Known named faults in Texas are the Balcones Fault Zone, Mexia Fault Zone, Luling Fault Zone, Hueco Bolson, Marathon Uplift, and Talco Fault Zone.

The impact of an earthquake is largely a function of the following components:

- Ground shaking (ground motion accelerations)
- Liquefaction (soil instability)
- Distance from the source (both horizontally and vertically)

No earthquake scenarios were selected for this plan because an earthquake event for the planning area is rare, according to the 2013 State of Texas Hazard Mitigation Plan.

11.2.3 Frequency

According to the USGS, the probability that a magnitude 5 or greater earthquake will occur in the planning area in the next few years is unlikely (event not probable in next 10 y ears). The USGS E arthquake Probability Mapping application estimates that the probability that a magnitude 5 or greater earthquake will occur in the next 500 years in Lee County and the participating communities is less than 3%. Overall, the probability of a d amaging ear thquake so mewhere in Lee County and the participating communities is considered rare. Small earthquakes that cause no or little damage are more likely. Small earthquakes that cause no or little damage are more likely. Small earthquake event in Lee County and the participating communities is unlikely (event not probability of an earthquake event in Lee County and the participating communities is unlikely (event not probability of an earthquake event in Lee County and the participating communities is unlikely (event not probability of an earthquake event in Lee County and the participating communities is unlikely (event not probability of an earthquake event in Lee County and the participating communities is unlikely (event not probable in next 10 years).

11.2.4 Severity

Earthquakes can cau se structural d amage, i njury, and l oss of life, a s well as damage to i nfrastructure networks, such as water, power, communication, and transportation lines. D amage and life loss can be particularly devastating in communities where buildings were not designed to withstand seismic forces (e.g., historic structures). Other damage-causing effects of earthquakes include surface rupture, fissuring, settlement, and permanent horizontal and vertical shifting of the ground. Secondary impacts can include landslides, rock falls, liquefaction, fires, dam failure, and hazardous materials incidents.

There are no known deaths or injuries from earthquakes in Lee County and the participating communities. Some of the past earthquake events in Texas were severe enough to cause minor property damage such as broken windows or contents falling from s helves. The very low probability of a n e vent suggests that potential for these impacts is minimal.

The severity of an earthquake can be expressed in terms of intensity or magnitude. Intensity represents the observed e ffects of g round s haking on pe ople, buildings, and natural features. The USGS has c reated ground motion maps based on c urrent information about several fault zones. These maps show the PGA that has a certain probability (2% or 10%) of being exceeded in a 50-year period, as shown on Figure 11-3. The PGA is measured in numbers of g's (the acceleration associated with gravity). The HAZUS modeled 500-Year Probabilistic Event scenario for Lee County produced a PGA of 0.0154, which is lower than the FEMA PGA minimum requirement (3%g) for earthquake analysis profiling. Figure 11-4 shows the 500-

Year Probabilistic Event, which produces only a light ground shaking and is likely to cause no damage. Vibrations feel like those of a heavy truck passing by. This means that during an event of such magnitude, dishes, windows, and doors rattle; walls and frames of structures creak; liquids in open vessels are slightly disturbed; and standing vehicles rock noticeably.

Magnitude is related to the amount of seismic energy released at the hypocenter of an earthquake. It is calculated based on the amplitude of the earthquake waves recorded on instruments. Whereas intensity varies depending on location with respect to the earthquake epicenter, magnitude is represented by a single, instrumentally measured value for each earthquake event.

In simplistic terms, the severity of an earthquake event can be measured in the following terms:

- How hard did the ground shake?
- How did the ground move? (horizontally or vertically)
- How stable was the soil?
- What is the fragility of the built environment in the area of impact?

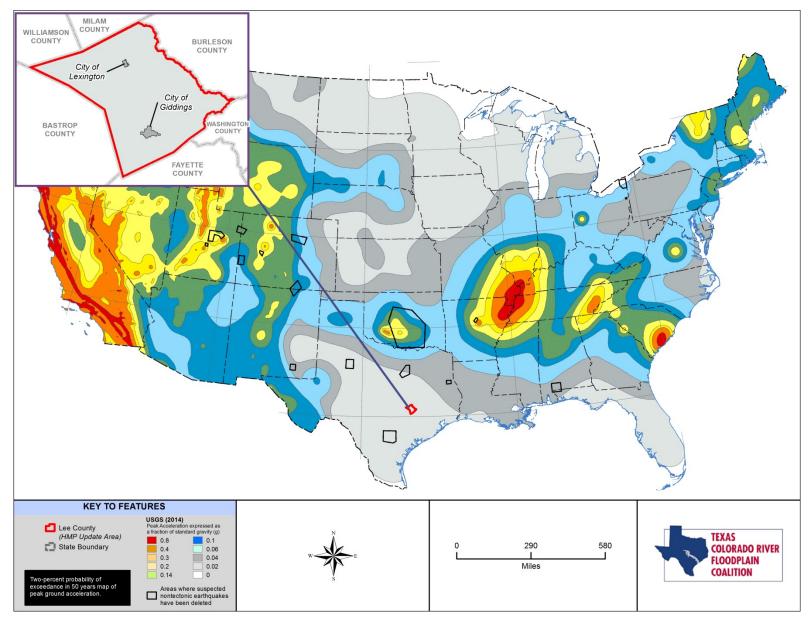


Figure 11-3. Peak Ground Acceleration (10% Probability of Exceedance in 50-Year Map of Peak Ground Acceleration)

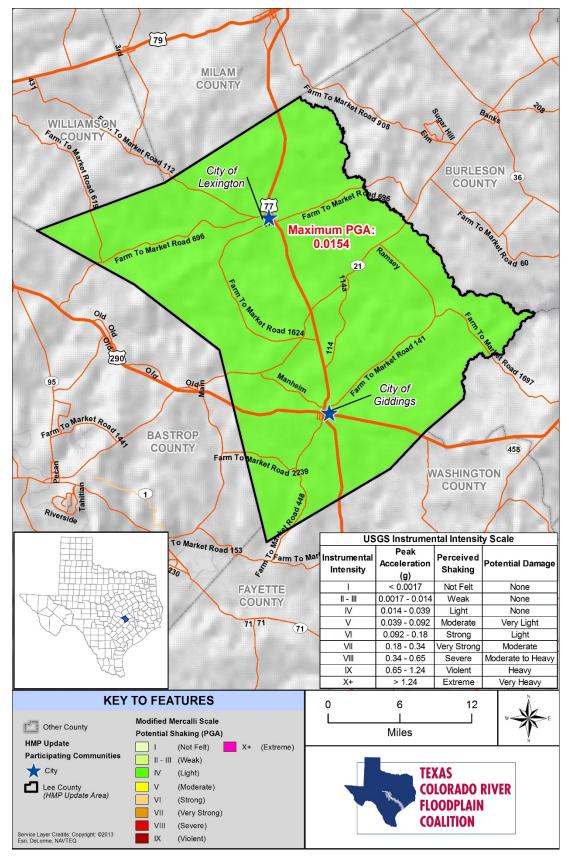


Figure 11-4. 500-Year Probability Event in Lee County

11.2.5 Warning Time

Part of what makes earthquakes so destructive is that they generally occur without warning. The main shock of an earthquake can usually be measured in seconds, and rarely lasts for more than a minute. Aftershocks can occur within the days, weeks, and even months following a major earthquake.

By studying the geologic characteristics of faults, geoscientists can often estimate when the fault last moved and estimate the magnitude of the earthquake that produced the last movement. Because the occurrence of earthquakes is relatively low to none in the county and the historical earthquake record is short, accurate estimations of magnitude, timing, or location of future dangerous earthquakes in Lee County are difficult to estimate.

There is currently no reliable way to predict the day or month that an earthquake will occur at any given location. Research is being done with warning systems that use the low energy waves that precede major earthquakes. These potential w arning sy stems g ive ap proximately 4 0 se conds n otice that a m ajor earthquake is about to occur. The warning time is very short but it could allow for someone to get under a desk, step away from a hazardous material they are working with, or shut down sensitive equipment.

11.3 SECONDARY HAZARDS

Earthquakes c an c ause l arge and s ometimes d isastrous landslides and m udslides. R iver v alleys ar e vulnerable to slope failure, often as a result of loss of cohesion in clay-rich soils. Soil liquefaction occurs when water-saturated sands, silts, or gravelly soils are shaken so violently that the individual grains lose contact with one another and float freely in the water, turning the ground into a pudding-like liquid. Building and road foundations lose load-bearing strength and may sink into what was previously solid ground. Unless properly secured, hazardous materials can be released, causing significant damage to the environment and people. Earthen dams and levees are highly susceptible to seismic events and the impacts of their eventual failures can be considered secondary risks for earthquakes.

11.4 CLIMATE CHANGE IMPACTS

The impacts of global climate change on e arthquake probability are unknown. Some scientists say that melting glaciers could induce tectonic activity. As ice melts and water runs off, tremendous amounts of weight are shifted on the earth's crust. As newly freed crust returns to its original, pre-glacier shape, it could cause seismic p lates to s lip a nd st imulate v olcanic act ivity according t or esearch into prehistoric earthquakes and volcanic activity. National Aeronautics and Space Administration (NASA) and US GS scientists found that retreating glaciers in southern Alaska may be opening the way for future earthquakes (NASA 2004).

Secondary impacts of earthquakes could be magnified by climate change. Soils saturated by repetitive storms could experience liquefaction during seismic activity due to the increased saturation. Dams storing increased volumes of water due to changes in the hydrograph could fail during seismic events. There are currently no models available to estimate these impacts.

11.5 EXPOSURE

All structures, people, and infrastructure within the participating communities are vulnerable to earthquake damages. The *FEMA How-To Guidance, Understanding Your Risks* (FEMA 386-2, page 1-7), suggests the earthquake hazard should be profiled if the PGA is greater than 3%g. Lee County and all participating communities' PGA is less than 2%g (.02) and there have been no recorded earthquakes in or near the HMP update ar ea. Therefore, o nly a m inimum l evel-1 H AZUS a nalysis w as p rofiled u sing t he 5 00-year probability event scenario.

11.5.1 Population

The population along the major geologic fault lines of Lee County and participating communities are the most pot entially exposed to di rect and indirect impacts from earthquakes. The degree of exposure is dependent on many factors, including the age and construction type of the structures people live in, the soil type their homes are constructed on, their proximity to fault location, and other factors. Whether impacted directly or indirectly, the entire population will have to deal with the consequences of earthquakes to some degree. Business interruption could keep people from working, road closures could isolate populations, and functional loss of utilities could impact populations that suffered no direct damage from an event itself.

11.5.2 Property

According to the HAZUS 2.2 inventory data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs), there are 7,161 buildings in the HMP update area (residential, commercial, and other) with an asset replaceable value of \$1.6 billion (excluding contents).

The vast majority of these buildings are within the participating communities and the unincorporated area. About 98% of these buildings (and 82% of the building value) are associated with residential housing.

Other types of buildings in this report include a gricultural, e ducational, religious, and g overnmental structures.

All the structures along the major geologic fault lines in the planning area are susceptible to earthquake impacts to varying degrees. Table 11-3 this total represents the structure and population exposure to seismic events along the major geologic faults in the HMP update area.

		Struc	tures and Po	pulation Affected	
Jurisdiction	Residential	Commercial	Other *	Total Structures	Total Populatior
City of Giddings	0	0	0	0	0
City of Lexington	401	7	1	409	64
Unincorporated Area	1,833	7	5	1,845	193
Planning Area Total	2,234	14	6	2,254	257

11.5.3 Critical Facilities and Infrastructure

All critical facilities and infrastructure in the planning area are exposed to the earthquake hazard. Table 6-3 and Table 6-4 list the number of each type of facility by jurisdiction. Hazardous material releases can occur during an earthquake from fixed facilities or transportation-related incidents. Transportation corridors can be disrupted during an earthquake, leading to the release of materials to the surrounding environment. Facilities holding h azardous materials a re of particular co neern b ecause of p ossible i solation of neighborhoods surrounding them. During an earthquake, structures storing these materials could rupture and leak into the surrounding area or an adjacent waterway, having a disastrous effect on the environment.

11.5.4 Environment

Secondary hazards associated with earthquakes will likely have some of the most damaging effects on the environment. Earthquake-induced landslides can significantly impact surrounding habitat. It is also possible for streams to be rerouted after an earthquake. This can change the water quality, possibly damaging habitat and feeding areas. There is a possibility of streams fed by groundwater drying up because of changes in underlying geology.

11.6 VULNERABILITY

All structures, people, and infrastructure within the participating communities are vulnerable to earthquake damage, however due to the low risk of occurrence, only a minimum level-1 HAZUS 500-year probability event analysis was conducted. The 500-Year HAZUS modeled event for Lee County and the participating communities produced a maximum PGA of 1.54%g (Figure 11-4), which is lower than the FEMA PGA minimum requirement for earthquake analysis (3%g). The potential shaking (0.0154 PGA) of the 500-year event in L ee County (and al l p articipating communities) creates a 'weak' p erceived s haking with n o potential damage on the USGS Instrumental Intensity Scale. While the probability of an event is rare, if an event were to occur, it would be of minimal magnitude with no damage.

Due to no previous earthquake events in the planning area and the rare likelihood that such an earthquake event may occur for Lee County and the participating communities, annualized economic losses from the HAZUS 500-Year modeled event produced \$0. Lee County and participating communities can expect no loss of functionality for critical facilities and in frastructures, u tility, transportation, and o ther e ssential services.

Vulnerability Narrative

The vulnerability of the participating communities are described below.

- **City of Giddings** The City of Giddings does not have any geological fault lines running through its jurisdiction. The nearest fault lines are approximately 7 miles to the northwest and east of the City. If an event were to occur in the City, critical facilities and major thoroughfares could be affected r educing em ergency r esponse t imes t o r esidents. A ccess to em ergency i nformation (phones, internet, radio, or Emergency Notification Systems) could limit community member's ability to talk to first responders and hear emergency warnings.
- Town of Lexington The Town of Lexington does not have any geological fault lines running through its jurisdiction. The nearest fault lines are just outside of Lexington's boundary to its north and 0.5 miles to the west. Residents who may not know what to do or where to go for help during an event are at a greater risk. Damages to highways that serve as evacuation and emergency routes such as US 77 would increase emergency response times and resident mobility.
- Lee County (Unincorporated Area) There a re m ultiple f ault lines t hroughout t he Unincorporated Areas of Lee County with the majority focused in the north and western portions of the County. Critical facilities and infrastructure, as well as residents near these lines, are more vulnerable. Damages to transportation features in this area could delay emergency service support from ne ighboring c ommunities. R ural residents and property a re more vulnerable as response times could be limited. Major thoroughfares that cross fault lines include US 77, FM 112, FM 696 and FM 1624. Bridges along these roadways are at an increased risk. Communities not integrating mitigation into local planning are at a greater risk as well. Community members not aware of the threat of earthquakes or their risks are less able to prepare for effects and are therefore more vulnerable.

Community Perception of Vulnerability

See front page of current chapter for a summary of hazard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

11.7 FUTURE TRENDS IN DEVELOPMENT

Land use in the planning area will be directed by master plans adopted by the county and its planning partners as well as local permitting departments and zoning maps. The information in this plan provides the participating partners a tool to ensure that there is no increase in exposure in areas of high seismic risk. Development in the planning area will be regulated through building standards and performance measures so that the degree of risk will be reduced. The International Building Code also establishes provisions to address seismic risk.

11.8 SCENARIO

An earthquake does not have to occur within the planning area to have a significant impact on the people, property and economy of the county. However, any seismic activity of 6.0 or greater on faults within the planning area would have significant impacts throughout the county. Earthquakes of this magnitude or higher w ould I ead t o m assive s tructural failure of property on hi ghly I iquefiable soils. L evees a nd revetments built on these poor soils would likely fail, representing a loss of critical infrastructure. These events c ould cause s econdary ha zards, including I andslides and mudslides that w ould further da mage structures. River valley hydraulic-fill sediment areas are also vulnerable to slope failure, often as a result of loss of cohesion in clay-rich soils.

11.9 ISSUES

Important issues associated with an earthquake include but are not limited to the following:

- Many s tructures within the pl anning a rea were b uilt pr ior t o 1994, when seismic pr ovisions became uniformly applied through building code applications.
- Critical facility owners should be encouraged to create or enhance continuity of operations plans using the information on risk and vulnerability contained in this plan.
- Geotechnical standards should be established that take into account the probable impacts from earthquakes in the design and construction of new or enhanced facilities.
- Earthquakes could trigger other natural hazard events such as dam failures and landslides, which could severely impact the county.
- A worst-case scenario would be the occurrence of a large seismic event during a flood or highwater event. Failures could happen at multiple locations, increasing the impacts of the individual events.
- The cost of retrofitting buildings to meet earthquake seismicity standards may be cost-prohibitive.
- Dams located in the county may not have been engineered to withstand probable seismic events.
- Information regarding liquefaction susceptibility of soils in the planning area is lacking.

CHAPTER 12. FLOOD

FLOOD RANKING				
Lee County	Medium			
City of Giddings	Medium			
City of Lexington	Low			

12.1 GENERAL BACKGROUND

12.1.1 Flood

The following description of flooding is an excerpt from the 2013 State of Texas Flood Mitigation Plan.

A flood is a general and temporary condition of partial or complete inundation of normally dry land areas from:

• The overflow of stream banks

DEFINITIONS

Flood — The inundation of normally dry land resulting from the rising and overflowing of a body of water.

Floodplain — The land area along the sides of a river that becomes inundated with water during a flood.

100-Year Floodplain — The area flooded by a flood that has a 1% chance of being equaled or exceeded each year. This is a statistical average only; a 100-year flood can occur more than once in a short period of time. The 1% annual chance flood is the standard used by most federal and state agencies.

Riparian Zone — The area along the banks of a natural watercourse.

- The unusual and rapid accumulation of runoff of surface waters from any source
- Mudflows or the sudden collapse of shoreline land

Flooding results when the flow of water is greater than the normal carrying capacity of the stream channel. Rate of rise, magnitude (or peak discharge), duration, and frequency of floods are a function of specific physiographic characteristics. Generally, the rise in water surface elevation is quite rapid on small (and steep gradient) streams and slow in large (and flat sloped) streams.

The causes of floods relate directly to the accumulation of water from precipitation, or the failure of manmade structures, such as dams or levees. Floods caused by precipitation are further classified as coming from: rain in a general storm system, rain in a localized intense thunderstorm, melting snow and ice, and hurricane/tropical storms. Floods may also be caused by structural or hydrologic failures of dams or levees. A hydrologic failure oc curs when the volume of water behind the dam or levee exceeds the structure's capacity resulting in overtopping. Structural failure arises when the physical stability of the dam or levee is compromised due to age, poor construction and maintenance, seismic activity, rodent tunneling, or myriad other causes. For more information on floods resulting from dam and levee failure refer to Chapter 9 of this plan.

General Rain Floods

General rain floods can result from moderate to heavy rainfall occurring over a wide geographic area lasting several days. They are characterized by a slow steady rise in stream stage and a peak flood of long duration. As various minor streams empty into larger and larger channels, the peak discharge on the mainstream channel may progress upstream or downstream (or remain stationary) over a considerable length of river. General rain floods can result in considerably large volumes of water. Because the rate of rise is slow and the time available for warning is great, few lives are usually lost, but millions of dollars in valuable public and private property are at risk.

Thunderstorm Floods

Damaging thunderstorm floods are caused by intense rain over basins of relatively small area. They are characterized by a sudden rise in stream level, short duration, and a relatively small volume of runoff.

Because there is little or no warning time, the term "flash flood" is often used to describe thunderstorm floods. Texas is included what is k nown as the "Flash Flood Alley" and the area along the Balcones Escarpment (from Austin south to San Antonio, then west to Del Rio) is one of the nation's three most flash flood-prone regions. Figure 12-1 and Figure 12-2 show the number of flash floods and storm centers in the HMP update area. Lee County and participating communities lies in the path of the "Flash Flood Alley".

Thunderstorm floods occur in every month of the year in Texas but are most common in the spring and summer. The mean annual number of thunderstorm flood days varies from 40 in eastern Texas to 60 in western Texas. Most flash flooding is caused by slow-moving thunderstorms, thunderstorms repeatedly moving over the same area, or heavy rains from hurricanes and tropical storms.

Flash floods can occur within a few minutes or after hours of excessive rainfall. Flash floods can roll boulders, tear out trees, destroy buildings and bridges, and carve out new channels. Rapidly rising water can reach heights of thirty feet or more. Flash flood-producing rains can also trigger catastrophic mudslides. Often there is no warning that flash floods are coming. Hill Country flash floods devastated the river basin and a re a major reason why the L CRA l ocated Mansfield D am and L ake T ravis (the flood control components of the Highland L ake chain) upstream of A ustin. Flash flooding poses a deadly danger to residents of the Lower Colorado River Basin. A number of roads run through low-lying areas that are prone to sudden and frequent flooding during heavy rains. Motorists often attempt to drive through barricaded or flooded roadways. It takes only 18 to 24 inches of water moving across a roadway to carry away most vehicles. Floating cars easily get swept downstream, making rescues difficult and dangerous.

Rain on Snowmelt Floods

Winter is the driest time of the year in Texas. Snowfall occurs at least once every winter in the northern half of T exas, although accumulations r arely are substantial ex cept in the High Plains. Snow is not uncommon in the mountainous areas of the Trans-Pecos, though heavy snows (five inches or more) come only once every two or three winters. More often than not, snow falling in the southern half of the state melts and does not stick to the surface; snow stays on the ground only once or twice in every decade. Snowfall rarely is observed before early November and hardly ever occurs after mid-April. Where it is not uncommon, snow is almost always heaviest in either January or February. Mean seasonal snowfall is 15 to 18 inches in the Texas Panhandle and 4 to 8 inches elsewhere in the High and Low Rolling Plains.

Hurricanes and Tropical Storms

The United States has a significant hurricane problem. More than 60% of our Nation's population live in coastal states from Maine to Texas, Hawaii, and Puerto Rico. In the United States, the Atlantic and Gulf Coast coastlines are densely populated and many regions lie less than 3m (10 ft) above mean sea level.

Lee C ounty a nd p articipating c ommunities, located in C entral Texas, a re exposed to flooding f rom hurricanes, tropical storms, and tropical depressions. Hurricanes, tropical storms, and tropical depressions produce soaking rain, high winds, flying debris, storm surges, tornadoes, and often the most deadly of all, inland flooding. Rain-triggered flooding is not just limited to coastlines as the reach of a large hurricane can cause deadly flooding well inland to communities hundreds of miles from the coast as intense rain falls from these huge tropical air masses. Increased flooding and erosion rates may cause landslides in some areas, especially mountainous regions

Besides causing extensive damage in coastal areas, hurricanes and tropical storms can often cause extensive damages to communities several miles inland. Just a few inches of water from a flood can cause tens of thousands of dollars in damage. Examples include Hurricane Katrina, Hurricane Ike, and Tropical Strom Allison.

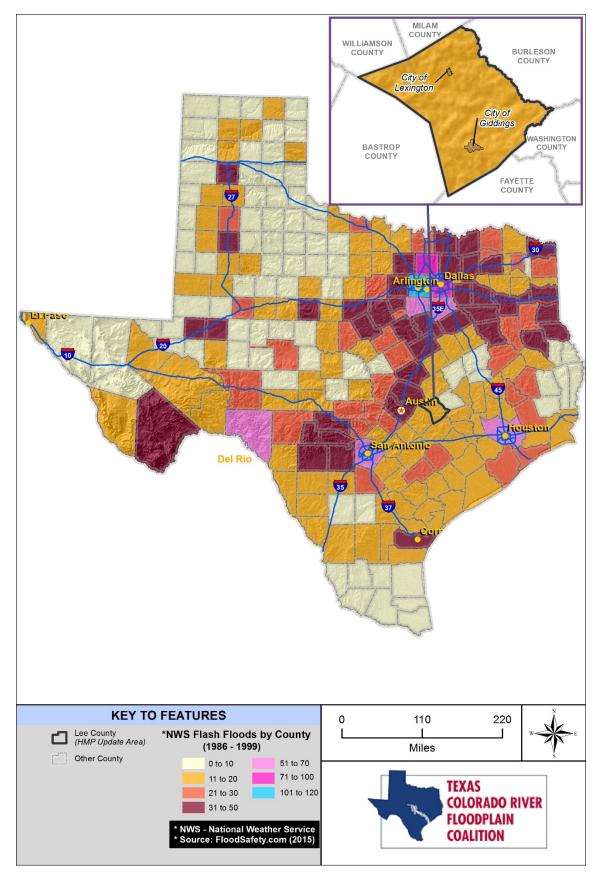


Figure 12-1. Number of Flash Floods in Texas per County (1986-1999)

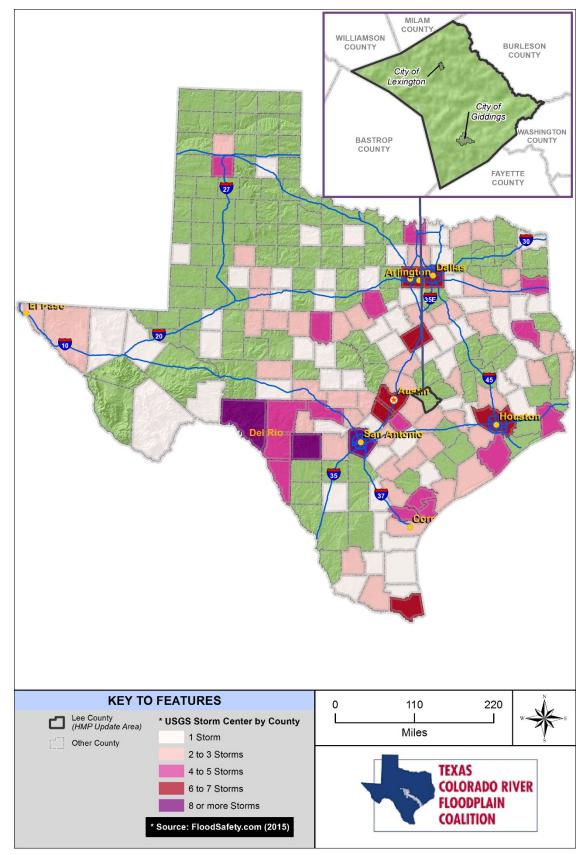


Figure 12-2. Number of Storm Centers by County

12.1.2 Floodplain

A floodplain is the area adjacent to a river, creek, or lake that becomes inundated during a flood. Floodplains may be broad, as when a river crosses an extensive flat landscape, or narrow, as when a river is confined in a canyon.

When floodwaters recede after a flood event, they leave behind layers of rock and mud. These gradually build up to create a new floor of the floodplain. Floodplains generally contain unconsolidated sediments (accumulations of sand, gravel, loam, silt, or clay), often extending below the bed of the stream. These sediments provide a natural filtering system, with water percolating back into the ground and replenishing groundwater. These are often important aquifers, the water drawn from them being filtered compared to the water in the stream. Fertile, flat reclaimed floodplain lands are commonly used for agriculture, commerce, and residential development.

Connections between a river and its floodplain are most apparent during and after major flood events. These areas form a complex physical and biological system that not only supports a variety of natural resources but also provides natural flood and erosion control. When a river is separated from its floodplain with levees and other flood control facilities, natural, built-in benefits can be lost, altered, or significantly reduced.

12.1.3 Measuring Floods and Floodplains

The frequency and severity of flooding are measured using a discharge probability, which is the probability that a certain river discharge (flow) level will be equaled or exceeded in a given year. Flood studies use historical records to estimate the probability of occurrence for the different discharge levels. The flood frequency equals 100 divided by the discharge probability. For example, the 100-year discharge has a 1% chance of being equaled or exceeded in any given year. These measurements reflect statistical averages only; it is possible for two or more floods with a 100-year or higher recurrence interval to occur in a short time period. The same flood can have different recurrence intervals at different points on a river.

The extent of flooding associated with a 1% annual probability of occurrence (the base flood or 100-year flood) is used as the regulatory boundary by FEMA and many agencies. Also referred to as the special flood hazard area (SFHA), this boundary is a convenient tool for assessing vulnerability and risk in flood-prone communities. Many communities have maps that show the extent and likely depth of flooding for the base flood. Corresponding water surface elevations describe the elevation of water that will result from a given discharge level, which is one of the most important factors used in estimating flood damage.

12.1.4 Floodplain Ecosystems

Floodplains can support ecosystems that are rich in plant and animal species. A floodplain can contain 100 or even 1,000 times as many species as a river. Wetting of the floodplain soil releases an immediate surge of nutrients: those left over from the last flood, and those that result from the rapid decomposition of organic matter that h as ac cumulated since then. Microscopic organisms thrive and larger species enter a rapid breeding cycle. Opportunistic feeders (particularly birds) move in to take advantage. The production of nutrients peaks and falls away quickly, but the surge of new growth endures for some time. This makes floodplains valuable for agriculture. Species growing in floodplains are markedly different from those that grow outside floodplains. For instance, riparian trees (trees that grow in floodplains) tend to be very tolerant of root disturbance and very quick-growing compared to non-riparian trees.

12.1.5 Effects of Human Activities

Because they border water bodies, floodplains have historically been popular sites to establish settlements. Human activities tend to concentrate in floodplains for a number of reasons: water is readily available; land is fertile and suitable for farming; transportation by water is easily accessible; and land is flatter and easier to d evelop. H owever, hu man a ctivity in floodplains frequently interferes with the natural function of floodplains. It can affect the distribution and timing of drainage, thereby increasing flood problems. Human development can create local flooding problems by altering or confining drainage channels. This increases flood potential in two ways: it reduces the stream's capacity to contain flows, and it increases flow rates or velocities downstream during all stages of a flood event. Human activities can interface effectively with a floodplain as long as steps are taken to mitigate the activities' adverse impacts on floodplain functions.

12.2 HAZARD PROFILE

Texas has the most flash flood deaths of any state in the country. Although Lee County and participating communities does not fall in the "Flash Flood Alley" of Texas, it still experiences flash flood events every year. The terrain is punctuated by a large number of limestone or granite rocks and boulders and a thin layer of topsoil, which makes the region very dry and prone to flash flooding. Other factors contributing to flash floods in the area include its location between the Rocky Mountains and the moisture laden Gulf of Mexico. As weather systems stall and dissipate over Texas, and they drop intense rains over small areas. In the past, Lee County and the participating communities in this HMP update has had significant seasonal floods along the Yegua Creek (East, Middle, and West Yegua Creeks) and Cummins Creek; however, these floods have been greatly reduced by flood control measures in the area.

Flooding in the H MP up date a rea is mostly claused by slow-moving thunderstorms, thunderstorms repeatedly moving over the same area, or heavy rains from hurricanes and tropical storms. Flash floods can occur within a few minutes or after hours of excessive rainfall. These rain events are most often microbursts, which produce a large amount of rainfall in a short amount of time. Flash floods, by their nature, occur suddenly but usually dissipate within hours. Despite their sudden nature, the NWS is usually able to issue advisories, watches, and warnings in advance of a flood.

The potential for flooding can change and increase through various land use changes and changes to land surface. A change in environment can create localized flooding problems inside and outside of natural floodplains by altering or confining watersheds or natural drainage channels. These changes are commonly created by human activities (e.g., development). These changes can also be created by other events such as wildfires. Wildfires create hydrophobic soils, a hardening or "glazing" of the earth's surface that prevents rainfall f rom be ing a bsorbed i nto t he g round, thereby i ncreasing r unoff, e rosion, a nd dow nstream sedimentation of channels.

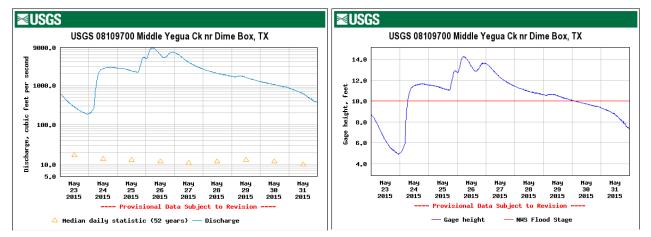
Potential f lood impacts i nelude l oss of l ife, injuries, a nd p roperty da mage. F loods c an a lso a ffect infrastructure (water, gas, sewer, and power utilities), transportation, jobs, tourism, the environment, and ultimately local and regional economies.

12.2.1 Past Events

The National Climatic Data Center S torm Events Database includes flood events that occurred in Lee County and participating communities between 1996 and 2014, as listed in Table 12-1 on Figure 12-4, as well as other events from local resources and experts. Events listed as Lee County, countywide, or zone portion in the table below affected large portions of the HMP update area and can include City of Giddings, City of Lexington and the Lee County unincorporated areas. Specific events described for each participating community is counted and described below. Large flood storms may have affected additional jurisdictions.

TABLE 12-1. HISTORIC FLOOD EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (1996-2014)						
Location	Dete	Estimated Da	mage Cost	_		
Location	Date	Property	Crops	Injuries	Deaths	
Countywide	06/01/1996	\$0	\$0	0	0	
Countywide	10/13/1997	\$15,000	\$0	0	0	
Countywide	10/17/1998	\$20,000	\$20,000	0	0	

. .		Estimated Da			
Location	Date	Property	Crops	Injuries	Deaths
South Portion	11/12/1998	\$40,000	\$50,000	0	0
Countywide	12/11/1998	\$5,000	\$0	0	0
Countywide	06/25/1999	\$5,000	\$20,000	0	0
Lincoln	07/11/1999	\$6,000	\$0	0	0
South Portion	07/13/1999	\$5,000	\$0	0	0
Old Dime Box	06/10/2000	\$5,000	\$0	0	0
Northwest Portion	11/02/2000	\$5,000	\$0	0	0
West Portion	05/06/2001	\$5,000	\$0	0	0
West Portion	11/15/2001	\$50,000	\$0	10	0
West Portion	07/02/2002	\$0	\$0	0	0
Countywide	07/14/2002	\$0	\$0	0	0
Countywide	11/04/2002	\$0	\$0	0	0
West Portion	12/04/2002	\$5,000	\$0	0	0
Countywide	02/20/2003	\$10,000	\$0	0	0
South Portion	06/13/2003	\$5,000	\$0	0	0
Countywide	06/09/2004	\$0	\$0	0	0
Countywide	06/25/2004	\$0	\$0	0	0
South Portion	06/29/2004	\$0	\$0	0	0
Countywide	10/02/2004	\$0	\$0	0	0
Countywide	11/21/2004	\$0	\$0	0	0
Countywide	11/22/2004	\$0	\$0	0	0
Fedor	05/08/2005	\$0	\$0	0	0
Giddings	08/08/2005	\$0	\$0	0	0
Lexington	08/09/2005	\$0	\$0	0	0
Giddings	10/18/2006	\$0	\$0	0	0
Fedor	03/13/2007	\$0	\$0	0	0
Serbin	05/02/2007	\$0	\$0	0	0
Giddings	05/26/2007	\$0	\$0	0	0
Lexington	05/28/2007	\$0	\$0	0	0
Giddings	06/17/2007	\$0	\$0	0	0
Fedor	06/27/2007	\$50,000	\$0	0	0
Fedor	07/06/2007	\$0	\$0	0	0
Serbin	07/25/2007	\$0	\$0	0	0
Giddings	04/18/2009	\$0	\$0	0	0
Lexington	09/13/2009	\$0	\$0	0	0
Lincoln	09/13/2009	\$0	\$0	0	0
Fedor	03/20/2012	\$0	\$0	0	1


TABLE 12-1. HISTORIC FLOOD EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (1996-2014)						
T (Estimated Dat	Estimated Damage Cost			
Location	Date	Property	Crops	Injuries	Deaths	
Tanglewood	03/20/2012	\$0	\$0	0	0	
Central Texas Area	5/25/2015	*	*	*	*	
Source: http://www.ncdc.noaa.gov *Ongoing						
Table may list more events than specific geographic coordinate					nclude	

Notable incidents from the NCDC Storm Events Database (and confirmed by local data) in Lee County and participating communities are described below:

- October 13, 1997 Up to 5 days of light rain over Lee County caused U.S. Highways 77 and 290 to be closed due to high water. Total rainfall was reported to be up to 5 inches across the county area. High winds from the thunderstorms knocked over trees in the Serbin area as the storms moved through the heavy rain event. A ssociated property da mages a mounted to \$15,000. N o injuries or fatalities were reported.
- October 17, 1998 A large system dropped large amounts of rain throughout the entire Central Texas region, causing widespread damage and flooding throughout. Due to the storm, Lee County experienced \$20,000 in property damages and another \$20,000 in crop damages. No injuries or fatalities were reported in Lee County.
- November 12, 1998 A line of thunderstorms produced heavy rains in the south portion of Lee County. A lready saturated soil conditions helped facilitate flash flooding throughout the area. Property and crop damages associated with the storm totaled \$40,000 and \$50,000, respectively. No injuries or fatalities were reported.
- November 15, 2001 Heavy r ains in the no rthwestern portion of Lee C ounty pr oduced four inches, with isolated totals reaching seven inches. Flash flooding occurred just before sunset and continued into the early morning hours of the next day. The flash flooding closed most rural roads and nearly all low-water crossings. Flooding was reported to be the worst since 1956 along Middle Yegua in the no rthwestern part of the county. Lexington s chools were forced to c ancel their classes, and numerous roads and bridges were washed away. Several rescues were required. Ten injuries were a ssociated with the event, though no f atalities were reported. P roperty da mages totaled \$50,000.
- December 4, 2002 Two to three inch of rain fell over Lee County, west of a line from Giddings to Lexington. Due to the already saturated soils, the rainfall was sufficient to produce brief flash flooding across the western part of the county. Property damages totaled \$5,000, and no injuries or fatalities were reported.
- February 2, 2003 Showers produced two-inch rainfall over the county, with isolated totals of eight inches. Rapid flash flooding occurred across the county, as many of the county roads were closed. S chools in the area were dismissed early. No injuries or fatalities were reported, and \$10,000 in property damages were reported.
- June 6, 2013 A line of showers and thunderstorms moved into Lee County, producing one to two inches of rainfall over the county. The heaviest amounts were in the southeast part of the

county, where up to 4 inches was reported. Flash flooding began and ended during the late evening period. No injuries or fatalities were reported, and resulting property damages totaled \$5,000.

- March 20, 2012 Thunderstorms produced heavy rain that caused flash flooding of FM 1624 at West Yegua Creek near Fedor where a vehicle was swept off the road by flood waters. The driver of the vehicle was found dead.
- June 27, 2014 Thunderstorms moved into Lee County shortly after midnight and produced a one to two inches of rain over the county. The heaviest amounts were in the Giddings area, where four inches fell. Flash flooding was widespread across the central part of the county with many rural roads closed. Among those closed due to flash flooding were CR 226, CR 230, CR 231. Associated property damage was \$50,000, and no injuries or fatalities were reported.
- May 23 to 25, 2015 An extreme precipitation event occurred throughout the Central and South Texas regions over Memorial Day weekend. A large volume of precipitation fell within a relatively short period of time, r esulting in damaging flood waters throughout the r egion. A ccording to NWS, observed rainfalls in Comal, Guadalupe, Hays, Comal, Travis, and Kerr Counties exceeded 6 inches within a 48-hour period. Areas within Blanco, Comal, and Kendall Counties received at least 8 inches within 48 hours, and a Blanco County rain gauge managed by LCRA recorded 9.41 inches of rain ov er the s ame t ime pe riod. L ee C ounty r eceived 2.61 i nches of precipitation throughout the county, according to NWS. On May 26, the Middle Yegua Creek reached a peak flow of approximately 9,000 cubic feet per second and reached an elevation of 14.1 feet, exceeding its flood stage by approximately 4 feet (Figure 12-3). There were multiple injuries and fatalities as well as significant damages throughout Texas during this event. Exact numbers on damage are still being calculated.

Source: NWS

Figure 12-3. Middle Yegua Creek Flow and Flood Stage During the May 2015 Flood Event

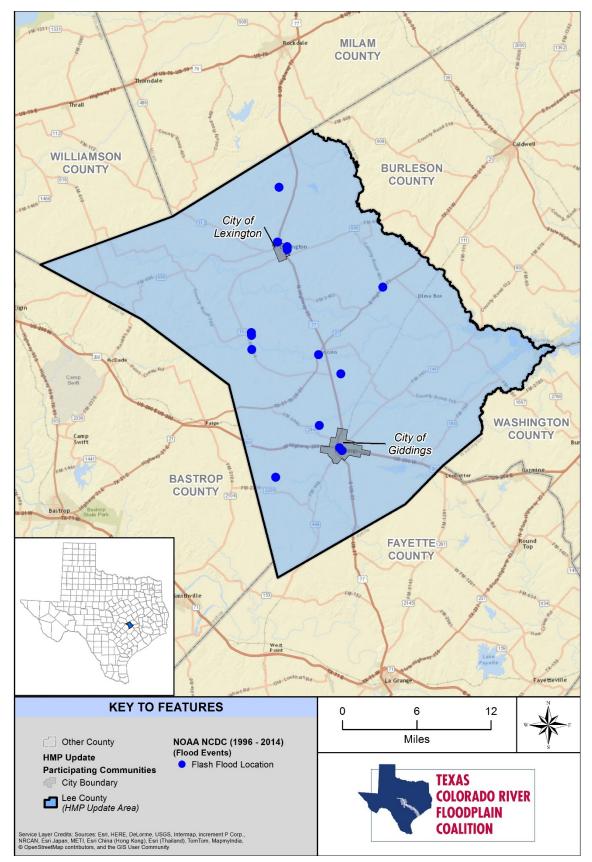


Figure 12-4. Flash Flood Events in Lee County and Participating Communities

12.2.2 Location

The majority of Lee County lies mostly within the Yegua Watershed. The lower southwestern portion is covered by the Lower Colorado-Cummins Watershed. The Middle Yegua Creek r uns c entrally from northwestern section to southeastern section of the county. Some local contributing creeks within Lee County include Cummins Creek, Nails Creek, East Yegua Creek, West Yegua Creek, Yegua Creek, and Rabbs Creek. These streams normally flow year round, although they may dry up during unusually dry years.

Runoff is captured to fill several lakes and reservoirs in the county. The USACE operates Somerville Dam, which impounds water from the three Yegua Creeks to form Somerville Lake, a recreational destination and irrigation source. Other smaller private dams are operated within the county to provide water supply and flood mitigation functions.

In a ddition to the r iverine flooding, the H MP update a rea a lso experience ur ban flooding c aused by urbanization which can increase the runoff potential of an area. Due to its relatively small urban areas, urban flooding is limited. Coastal flooding is typically a result of storm surge, wind-driven waves, and heavy r ainfall produced by hur ricanes, tropical storms, and ot her large c oastal s torms t hat m igrate northward from the Gulf of Mexico. Coastal flooding does not apply to Lee County because of its inland location.

The floodplain boundary extents for most of the creeks, streams, rivers, and lakes in Lee County and the participating communities have been mapped by FEMA during its Map Modernization Program. Current FIRMs are available countywide and have an effective date of April 16, 2014. The resulting FIRMs provide an official depiction of flood hazard risks and risk premium zones for each community and for properties located within it. While the FEMA digital flood data is recognized as best available data for planning purposes, it does not always r eflect the most ac curate and u p-to-date flood r isk. R iverine flooding, stormwater flooding, and flood-related losses often do occur outside of delineated SFHAs.

Lee C ounty ha s 48,7 08 a cres in t he 100 -year f loodplain, a nd 49 ,110 a cres i n 500 -year f loodplain countywide (including non-participating communities). Table 12-2 shows the distribution of the acreage across the participating jurisdictions in the planning area.

TAE ACREAGE IN THE 100-YEAR AND 50	BLE 12-2. 00-YEAR FLOODPLAIN	BY JURISDICTION
Jurisdiction	Area (ac	eres)
Jurisaletion	100-Year	500-Year
City of Giddings	157	157
City of Lexington	7	7
Unincorporated Area	47,987	48,432
Total for Planning Area Only	48,151	48,596

Figure 12-5 shows the SFHAs in Lee County. Figure 12-6 and Figure 12-7 show the SFHAs for each participating community.

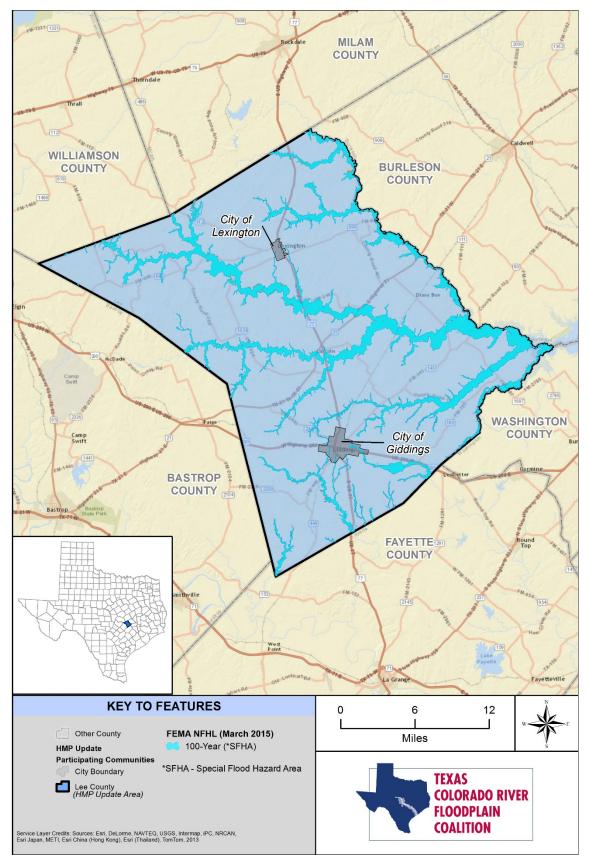


Figure 12-5. Special Flood Hazard Areas in Lee County

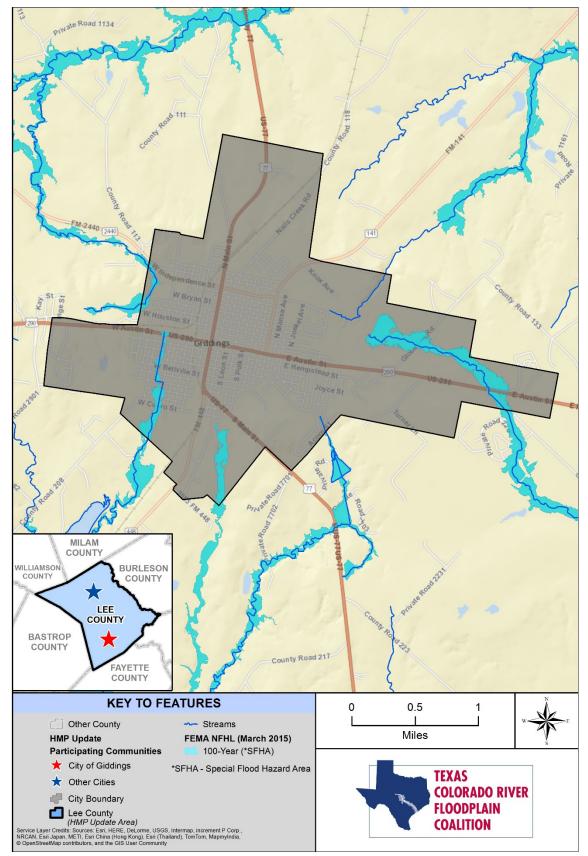


Figure 12-6. Special Flood Hazard Areas in the City of Giddings

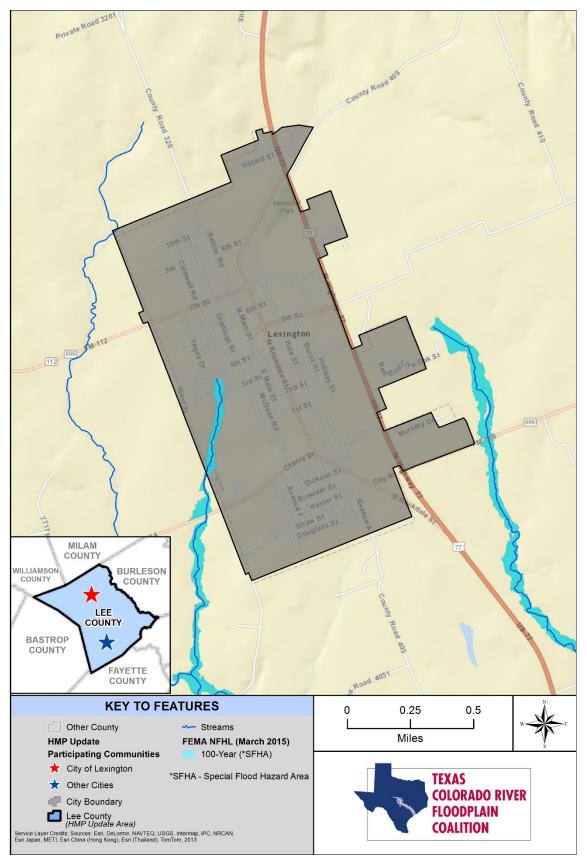


Figure 12-7. Special Flood Hazard Areas in the City of Lexington

12.2.3 Frequency

Seasonal flooding on the East and Middle Yegua Creek, Cummins Creek, Nails Creek, and the numerous creeks in the county have increased over time due to increase rainfall events and weather patterns. Flash floods are still considered to be highly likely to occur in any given year. This probability is based on the 42 events over 67 years reported in the National Climatic Data Center Storm Events Database. Based on a historical analysis, Lee County's unincorporated area c an expect 1-2 events per year and has the same frequency and probability for future events. The City of Giddings can expect approximately 1 event every 3-4 years. The City of Lexington can expect approximately 1 event every 6-7 years These communities also have the same frequency and probability for future events.

12.2.4 Severity

Based on the 100-Year HAZUS-MH Probabilistic Event scenario for Lee County and the participating communities,, the magnitude/severity of flooding is high. A pproximately 64 % of s tructures will be moderately (11 to 25%) damaged, and 5,000 tons of debris will be generated requiring more than 200 truckloads (at 25 tons/truck) to remove the debris generated by the flood. The 100-Year HAZUS-MH flood scenario estimates a pproximately 136 hous eholds will be displaced and will seek temporary lodging in public shelters. Overall significance is considered severe.

The intensity and magnitude of a flood event is also determined by the depth of flood waters. Table 12-3 describes the type of risk and potential magnitude of an event in relation to water depth. The water depths shown in Table 12-3 are estimated based on elevation data above grade.

TABLE 12-3. EXTENT SCALE – WATER DEPTH					
SEVERITY	WATER DEPTH (feet)	DESCRIPTION			
BELOW FLOOD STAGE	0 to 5	Water be gins to exceed the low s ections of banks and the lowest sections of the floodplain.			
ACTION STAGE	5 to 10	Flow is well into the floodplain. Minor low-land flooding reaches low areas of the floodplain. Livestock should be moved from low- lying areas.			
FLOOD STAGE	10 to 15	Homes are threatened and properties downstream of river flows or in low-lying areas begin to flood.			
MODERATE FLOOD STAGE	15 to 20	At this stage, the lowest homes downstream flood. Roads and bridges in the floodplain flood severely and are dangerous to motorists.			
MAJOR FLOOD STAGE	20 and Above	Major f looding approaches homes in the f loodplain. Primary and Secondary roads and bridges are severely flooded and very dangerous. Major flooding extents well into the floodplain, destroying property, equipment, and livestock.			

The range of flood intensity that Lee County and the participating communities experience is high, even for the 100-Year flood events. This ranges from 0 feet to 10 feet in most areas. Even though most of the depths place the participating communities at the 'action stage' as shown in Table 12-3, the Middle Yegua Creek can experience flooding past the flood stage with over 14 feet as shown in Figure 12-3. Based on historical occurrences, the planning area could experience an average of 5-10 inches of water within a 24 hour period. Figure 12-8 to Figure 12-10 shows the flood depths for the area.

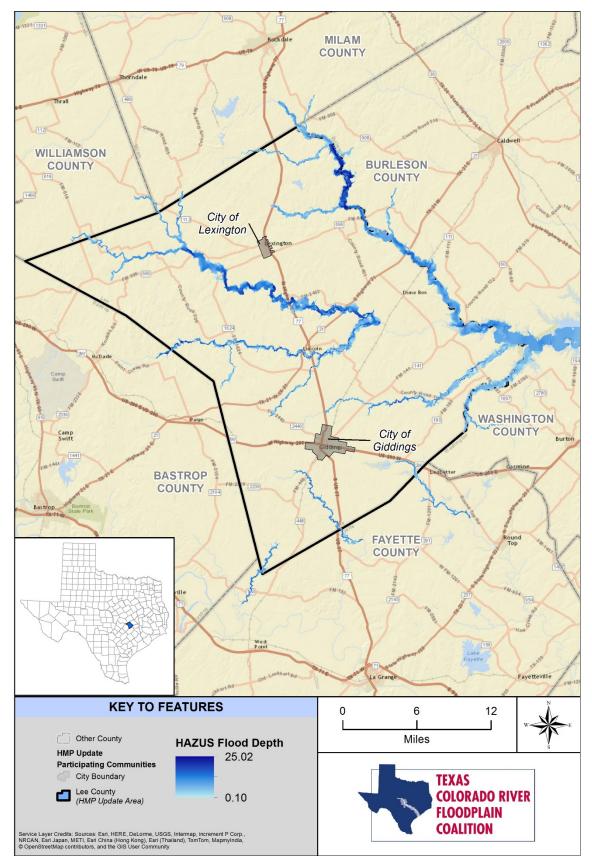


Figure 12-8. Flood Depths in Lee County

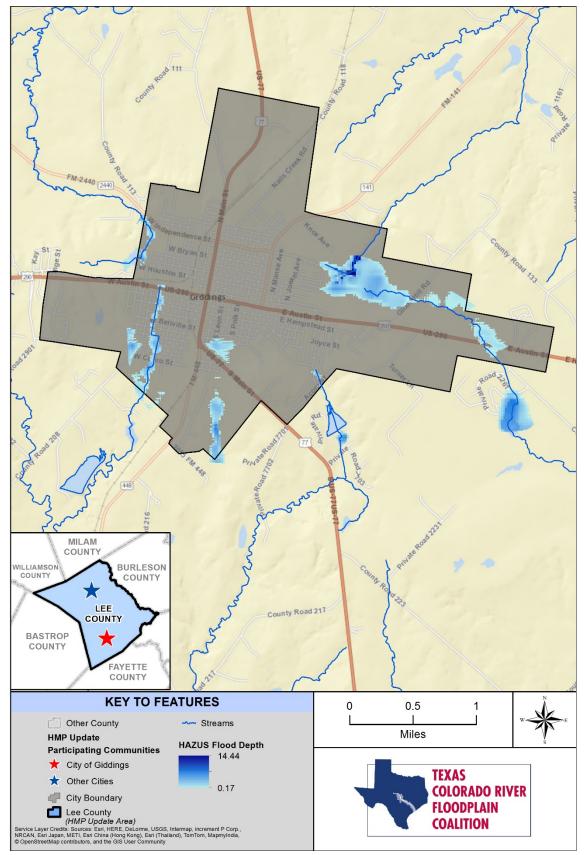


Figure 12-9. Flood Depths in City of Giddings

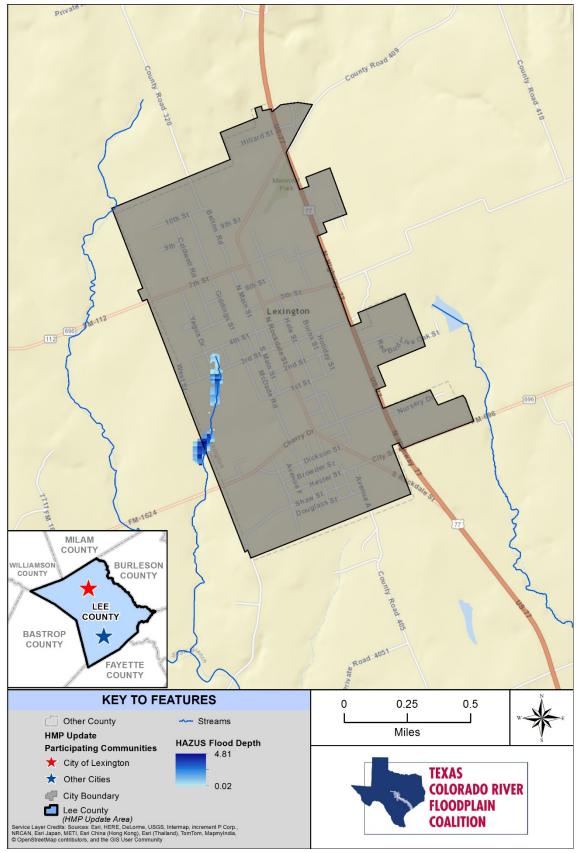


Figure 12-10. Flood Depths in in the City of Lexington

12.2.5 Warning Time

Due to the sequential pattern of meteorological conditions needed to cause serious flooding, it is unusual for a flood to occur without warning. Warning times for floods can be between 24 and 48 hours. Flash flooding can be less predictable, but potential hazard areas can be warned in advanced of potential flash flooding danger.

12.3 SECONDARY HAZARDS

The most problematic secondary hazard for flooding is bank erosion, which in some cases can be more harmful than actual flooding. This is especially true in the upper courses of rivers with steep gradients, where floodwaters may pass quickly and without much damage, but scour the banks, edging properties closer to the floodplain or causing them to fall in. Flooding is also responsible for hazards such as landslides when high flows over-saturate soils on steep slopes, causing them to fail. Hazardous materials spills are also a secondary hazard of flooding if storage tanks rupture and spill into streams, rivers, or storm sewers.

12.4 CLIMATE CHANGE IMPACTS

Use of historical hydrologic data has long been the standard of practice for designing and operating water supply and flood protection projects. For example, historical data are used for flood forecasting models. This method of forecasting assumes that the climate of the future will be similar to that of the period of historical record. However, the hydrologic record cannot be used to predict changes in frequency and severity of extreme climate events such as floods. Going forward, model calibration or statistical relation development must happen more frequently, new forecast-based tools must be developed, and a standard of practice that explicitly considers climate change must be adopted. Climate change is already impacting water resources, and resource managers have observed the following:

- Historical hydrologic patterns can no longer be solely relied upon to forecast the water future.
- Precipitation and runoff patterns are changing, increasing the uncertainty for water supply and quality, flood management, and ecosystem functions.
- Extreme cl imatic ev ents will b ecome m ore f requent, n ecessitating i mprovement i n f lood protection, drought preparedness, and emergency response.

High frequency flood events (e.g., 10-year floods) in particular will likely increase with a changing climate. Along with reductions in the amount of the snowpack and accelerated snowmelt, scientists project greater storm intensity, resulting in more direct runoff and flooding. Changes in watershed vegetation and soil moisture conditions will likewise change runoff and recharge patterns. As stream flows and velocities change, erosion patterns will also change, altering channel shapes and depths, possibly increasing sedimentation be hind da ms, and a ffecting ha bitat a nd water quality. With p otential i ncreases i n t he frequency and intensity of wildfires due to climate change, there is potential for more floods following fire, which increase sediment loads and water quality impacts.

As hydrology changes, what is currently considered a 100-year flood may strike more often, leaving many communities at greater risk. Planners will need to factor a new level of safety into the design, operation, and regulation of flood protection facilities such as dams, floodways, bypass channels, and levees, as well as the design of local sewers and storm drains.

12.5 EXPOSURE

The Level 2 HAZUS-MH protocol was used to assess the risk and vulnerability to flooding in the planning area. The model used U.S. Census data at the block level and calculated floodplain data, which has a level of accuracy acceptable for planning purposes. Where possible, the generated HAZUS-MH flood depth data was en hanced using r evised F EMA flood depth grids for the area. The H AZUS 2.2 d efault inventory (updated with 2010 U.S. Census data and 2014 RS Means Squared Foot Costs) data was used.

12.5.1 Population

Population counts of those living in the floodplain in the planning area were generated by census block demographic data (2010 U.S. C ensus data) that intersect with the 100-year and 500-year floodplains identified on FIRMs. The methodology used to generate population estimates intersected census block demographic data with the identified floodplains and then aggregating the resulting data to the community boundaries. Using this approach, it was estimated that the exposed population for the planning area within the 100-year floodplain or SFHA is 1,013 (6.23% of the total county population). In the 500-year floodplain it is estimated that 1,223 people countywide live within the mapped non-SFHA areas (7.53% of the total county population).

12.5.2 Property

Present Land Use

Table 12-4 and Table 12-5 show the present land uses in the 100-year and 500-year floodplains for the participating communities (not including nonparticipating communities).

Structures in the Floodplain

Table 12-6 and Table 12-7 summarize t he total a rea and num ber of s tructures in the floodplain by municipality. The updated HAZUS-MH model inventory data estimated that there are 476 structures within the 100-year floodplain and 480 structures within the 500-year floodplain. In the 100-year floodplain, 93% of these structures are in unincorporated areas and 99% are residential.

TABLE 12-4. PRESENT LAND USE IN THE 100-YEAR FLOODPLAIN					
Present Use Classification	City of Giddings	City of Lexington	Unincorporated Area	Planning Area Total	% of Total
Barren Land (Rock/Sand/Clay)	0	0	254	254	0.53
Cultivated Crops	0	0	820	820	1.70
Deciduous Forest	18	0	6,428	6,446	13.39
Developed High Intensity	0	0	1	1	< 0.01
Developed, Low Intensity	8	0	107	115	0.24
Developed, Medium Intensity	5	0	17	22	0.05
Developed, Open Space	34	3	968	1,005	2.09
Evergreen Forest	0	0	1,686	1,686	3.50
Emergent Wetlands	0	0	319	319	0.66
Grassland/Herbaceous	3	1	1,208	1,212	2.52
Mixed Forest	1	0	1,347	1,348	2.80
Open Water	2	0	594	596	1.24

TABLE 12-4. PRESENT LAND USE IN THE 100-YEAR FLOODPLAIN						
		Ar	ea (acres)			
Present Use Classification	City of City of Giddings Lexington		Unincorporated Area	Planning Area Total	% of Total	
Pasture/Hay	72	2	13,756	13,830	28.72	
Shrub/Scrub	12	1	5,227	5,240	10.88	
Woody Wetlands	2	0	15,255	15,257	31.69	
Total	157	7	47,987	48,151	100	

TABLE 12-5. PRESENT LAND USE IN THE 500-YEAR FLOODPLAIN						
Present Use Classification	City of Giddings	City of Lexington	Unincorporated Area	Planning Area Total	% of Total	
Barren Land (Rock/Sand/Clay)	$0 \qquad 0 \qquad 76/$		264	0.54		
Cultivated Crops	0	0	835	835	1.72	
Deciduous Forest	18	0	6,484	6,502	13.38	
Developed High Intensity	0	0	1	1	< 0.01	
Developed, Low Intensity	8	0	114	122	0.25	
Developed, Medium Intensity	5	0	18	23	0.05	
Developed, Open Space	34	3	992	1,029	2.12	
Evergreen Forest	0	0	1,688	1,688	3.47	
Emergent Wetlands	0	0	334	334	0.69	
Grassland/Herbaceous	3	1	1,217	1,221	2.51	
Mixed Forest	1	0	1,361	1,362	2.80	
Open Water	2	0	595	597	1.23	
Pasture/Hay	72	2	13,948	14,022	28.85	
Shrub/Scrub	12	1	5,286	5,299	10.90	
Woody Wetlands	2	0	15,295	15,297	31.48	
Total	157	7	48,432	48,596	100	

STRUCTURES AND POPULATION IN THE 100-YEAR FLOODPLAIN						
		Structu	res and Po	pulation Affected		
Jurisdiction	Residential	Commercial	Other*	Total Structures Affected	Total Population Affected	
City of Giddings	27	2	0	29	105	
City of Lexington	5	0	0	5	13	
Unincorporated Area	439	1	1	441	895	
Planning Area Total	471	3	1	476	1,013	

511001	JRES AND POPULATION IN THE 500-YEAR FLOODPLAIN Structures and Population Affected					
Jurisdiction	Residential		•	Total Structures Affected	Total Population Affected	
City of Giddings	27	2	0	29	105	
City of Lexington	5	0	0	5	13	
Unincorporated Area	444	1	1	446	905	
Planning Area Total	476	3	1	480	1,023	

Exposed Value

Table 12-8 and Table 12-9 summarize the estimated value of exposed buildings in the planning area in the 100-year and 500-year floodplains. The updated HAZUS-MH model inventory data estimated \$159 million worth of building and contents exposure to the 100-year flood. This represents 5.91% of the total assessed value of the planning a rea. A pproximately \$161 m illion worth of building-and-contents exposure was estimated to be exposed to the 500-year flood. This represents 5.97% of the total assessed value of the planning area.

TABLE 12-8. VALUE OF STRUCTURES IN 100-YEAR FLOODPLAIN					
	Va	alue Exposed (\$)			
Jurisdiction	Structure	Contents	Total	Total Assessed Value (\$)	% of Total Assessed Value
City of Giddings	10,692,532	8,642,870	19,335,402	871,346,709	2.22
City of Lexington	856,227	434,884	1,291,111	177,669,507	0.73
Unincorporated Area	90,274,521	48,419,829	138,694,351	1,645,914,085	8.43
Planning Area Total	101,823,280	57,497,583	159,320,864	2,694,930,301	5.91

TABLE 12-9. VALUE OF STRUCTURES IN 500-YEAR FLOODPLAIN						
	V	alue Exposed (\$)				
Jurisdiction	Structure	Contents	Total	Total Assessed Value (\$)	% of Total Assessed Value	
City of Giddings	10,692,532	8,642,870	19,335,402	871,346,709	2.22	
City of Lexington	856,227	434,884	1,291,111	177,669,507	0.73	
Unincorporated Area	91,252,948	48,938,500	140,191,448	1,645,914,085	8.52	
Planning Area Total	102,801,707	58,016,254	160,817,961	2,694,930,301	5.97	

12.5.3 Critical Facilities and Infrastructure

Table 12-10 and Table 12-11 summarize the critical facilities and infrastructure in the 100-year and 500-year floodplains of the planning area. Details are provided in the following sections.

TABLE 12-10. CRITICAL FACILITIES AND INFRASTRUCTURE IN THE 100-YEAR FLOODPLAIN				
Jurisdiction	City of Giddings	City of Lexington	Unincorporated Area	Planning Area Total
Medical and Health	0	0	0	0
Government Functions	0	0	0	0
Protective Functions	0	0	0	0
Schools	0	0	0	0

TABLE 12-10. CRITICAL FACILITIES AND INFRASTRUCTURE IN THE 100-YEAR FLOODPLAIN					
Jurisdiction	City of Giddings	City of Lexington	Unincorporated Area	Planning Area Total	
Hazardous Materials	0	0	0	0	
Bridges	1	0	69	70	
Water Storage	0	0	0	0	
Wastewater	0	0	1	1	
Power	0	0	1	1	
Communications	0	0	0	0	
Transportation	0	0	0	0	
Dams	0	0	1	1	

TABLE 12-11. CRITICAL FACILITIES AND INFRASTRUCTURE IN THE 500-YEAR FLOODPLAIN				
Jurisdiction	City of Giddings	City of Lexington	Unincorporated Area	Planning Area Total
Medical and Health	0	0	0	0
Government Functions	0	0	0	0
Protective Functions	0	0	0	0
Schools	0	0	0	0
Hazardous Materials	0	0	0	0
Bridges	1	0	70	71
Water Storage	0	0	0	0
Wastewater	0	0	1	1
Power	0	0	1	1
Communications	0	0	0	0
Transportation	0	0	0	0
Dams	0	0	1	1

Utilities and Infrastructure

It is important to identify who may be at risk if infrastructure is damaged by flooding. Roads or railroads that are blocked or damaged can isolate residents and can prevent access throughout the county, including emergency service providers needing to get to vulnerable populations or to make repairs. Bridges washed out or blocked by floods or debris also can cause isolation. Water and sewer systems can be flooded or backed u p, causing h ealth p roblems. U nderground utilities can b e d amaged. L evees c an f ail o r b e overtopped, inundating the land that they protect. The following sections describe specific types of critical infrastructure.

Roads

The major roads in the planning area that pass through the 100-year floodplain and thus are exposed to flooding are U.S. Highways 77 and 290, and State Highway 21. In severe flood events, these roads can be blocked or damaged, preventing access to some areas.

Bridges

Flooding events can significantly impact road bridges. These are important because often they provide the only ingress and egress to some neighborhoods. There are 70 bridges that are in or cross over the 100-year floodplain.

Water and Sewer Infrastructure

Water and sewer systems can be affected by flooding. Floodwaters can back up drainage systems, causing localized flooding. Culverts can be blocked by debris from flood events, also causing localized ur ban flooding. Floodwaters can get into drinking water supplies, causing contamination. Sewer systems can be backed up, causing wastewater to spill into homes, neighborhoods, rivers, and streams.

12.5.4 Environment

Flooding is a natural event, and floodplains provide many natural and beneficial functions. Nonetheless, with human development factored in, flooding can impact the environment in negative ways. Migrating fish can wash into roads or over levees into flooded fields, with no possibility of escape. Pollution from roads, such as oil, and hazardous materials can wash into rivers and streams. During floods, these can settle onto normally dry soils, polluting them for agricultural uses. Human development such as bridge abutments and levees, and logjams from t imber h arvesting can increase s tream b ank er osion, cau sing r ivers and streams to migrate into non-natural courses.

12.6 VULNERABILITY

Many of the areas exposed to flooding may not experience serious flooding or flood damage. This section describes v ulnerabilities in t erms of pop ulation, property, i nfrastructure, and e nvironment. The vulnerability analysis was performed at the census-block level. This methodology is likely to overestimate impacts from both the modeled 100-year and 500-year flood events as it is assumed that both structures and the population are evenly spread throughout census blocks.

12.6.1 Population

A geographic analysis of demographics using the default HAZUS-MH model data (2010 U.S. Census demographics) identified populations vulnerable to the flood hazard as follows. These numbers are calculated assuming that the population/households are evenly distributed over the census blocks.

• Economically D isadvantaged P opulations—It is estimated that approximately 1 % of the population w ithin t he 1 00-year f loodplain a re economically d isadvantaged. E conomically disadvantaged is defined as having household incomes of \$20,000 or less.

- Population over 65 Y ears Old—It is estimated that approximately 26% of the population in the 100-year floodplain are over 65 years old.
- Population under 16 Years Old—It is estimated that approximately 18% of the population in the 100-year floodplain are under 16 years of age.

The following impacts on persons and households in Lee County were estimated for the 100-year and 500-year flood events through the Level 2 HAZUS-MH analysis:

- During an 100-year flood event
 - Displaced population = 78
 - Persons requiring short-term shelter = 136
- During a 500-year flood event
 - Displaced population = 118
 - Persons requiring short-term shelter = 159

12.6.2 Property

HAZUS-MH calculates losses to structures from flooding by looking at depth of flooding and type of structure. Using historical flood insurance claim data, HAZUS-MH estimates the percentage of damage to structures and their contents by applying established damage functions to an inventory. For this analysis, the default inventory data provided with HAZUS-MH was used. The analysis is summarized in Table 12-12 for the 100-year flood event. It is estimated that there would be up to \$20.4 million of flood loss from a 100-year flood event in the planning area. This represents 12.82% of the total exposure to the 100-year flood and 0.76% of the exposed replacement value for the county. Losses are estimated to be \$26.5 million from a 500-year flood event, representing 16.8% of the exposure to the 500-year event and 0.98% of the total replacement value for the county (Table 12-13).

TABLE 12-12. LOSS ESTIMATES FOR THE 100-YEAR FLOOD EVENT								
Jurisdiction		Loss (\$)		Exposed Value	% of Total Exposed			
	Structure	Contents	Total		Value			
City of Giddings	1,378,000	2,084,000	3,462,000	\$19,335,402	17.90			
City of Lexington	51,000	32,000	83,000	\$1,291,111	6.43			
Unincorporated Area	9,825,744	7,057,813	16,883,557	\$138,694,351	12.17			
Planning Area Total	11,254,744	9,173,813	20,428,557	\$159,320,864	12.82			

TABLE 12-13. LOSS ESTIMATES FOR THE 500-YEAR FLOOD EVENT							
Jurisdiction		Loss (\$)		Exposed Value	% of Total Exposed		
	Structure	Contents	Total		Value		
City of Giddings	1,378,000	2,084,000	3,462,000	\$19,335,402	17.90		

TABLE 12-13. LOSS ESTIMATES FOR THE 500-YEAR FLOOD EVENT							
Jurisdiction		Loss (\$)		Exposed Value % of To Expos			
	Structure	Contents	Total	• (\$)	Value		
City of Lexington	51,000	32,000	83,000	\$1,291,111	6.43		
Unincorporated Area	13,333,676	9,463,766	22,797,442	\$140,191,448	16.26		
Planning Area Total	14,762,676	11,579,766	26,342,442	\$160,817,961	16.38		

National Flood Insurance Program

Table 12-14 lists flood insurance statistics (from 1971 to May 2012) that help identify vulnerability in the planning area. Lee County and the Cities of Giddings and Lexington participate in the NFIP.

Jurisdiction	Initial FIRM Effective Date	Claims	Value of Claims Paid
City of Giddings	9/1/1987	2	\$156,318
City of Lexington	4/16/2014	0	0
Unincorporated Area	4/1/2007	0	0
Lee County Total	5/2/2012 *	2	\$156,318

Properties constructed after a FIRM has been adopted are eligible for reduced flood insurance rates. Such structures are less vulnerable to flooding since they were constructed after regulations and codes were adopted to decrease vulnerability. Properties built before a FIRM is adopted are more vulnerable to flooding because they do not meet code or are located in hazardous areas. The first FIRM for the City of Giddings was available in 1987, the City of Lexington in 2014, and Lee County in 2012.

The following information from flood insurance statistics is relevant to reducing flood risk:

- The use of flood insurance in the planning area is less than the national average
- The average c laim paid in Lee C ounty (January 1, 1978, to July 31, 2015) is a pproximately \$78,159, above the national average

Lee C ounty's c ontinued NFIP c ompliance is detailed in their floodplain management program and the Flood Prevention Order, 2013 as amended that is enforced by the County's Permitting Department. The County has several mitigation actions such as improving flood risk assessment, upgrades drainage systems and educating homeowners on natural hazards listed in Table 19-2. These measures are intended to reduce the future flood risks in the SFHA and continue the County's good standing with NFIP.

The C ity of G iddings's floodplain m anagement pr ogram is de tailed in the S tandard f or F loodplain Management and it is enforced by the Code Compliance Officer. The City stated they want to provide education for homeowners on natural hazards as a mitigation action listed in Table 19-2.

The City of Lexington's floodplain management program is within Chapter 65, Subdivision of Land and enforced by the Police Chief. The mitigation actions in Table 19-2 state that the City intends construct drainage systems and flood control structures, update building codes, and education homeowners on natural hazard risks.

All the m unicipal pl anning pa rtners a re i nformed of t he training s chedule f or their F loodplain Administrators through the TCRFC and the TWDB and attend continuing education seminars and classes on a yearly basis.

Repetitive Loss

A repetitive loss property is defined by FEMA as an NFIP-insured property that has experienced any of the following since 1978, regardless of any changes in ownership:

- Four or more paid losses in excess of \$1,000
- Two paid losses in excess of \$1,000 within any rolling 10-year period
- Three or more paid losses that equal or exceed the current value of the insured property

Repetitive loss properties make up only 1% to 2% of flood insurance policies in force nationally, yet they account for 40% of the nation's flood insurance claim payments. In 1998, FEMA reported that the NFIP's 75,000 r epetitive loss s tructures have a lready c ost \$ 2.8 billion i n flood i nsurance payments and t hat numerous other flood-prone structures remain in the floodplain at high risk. The government has instituted programs encouraging communities to identify and mitigate the causes of repetitive losses. A recent report on repetitive losses by the National Wildlife Federation found that 20% of these properties are outside any mapped 100-year floodplain. The key identifiers for repetitive loss properties are the existence of flood insurance policies and claims paid by the policies.

FEMA-sponsored programs, require participating communities to identify repetitive loss areas. A repetitive loss area is the portion of a floodplain holding structures that FEMA has identified as meeting the definition of repetitive loss. Identifying repetitive loss areas helps to identify structures that are at risk but are not on FEMA's list of repetitive loss structures because no flood insurance policy was in force at the time of loss. Figure 12-11 shows the location of repetitive loss properties in Lee County and the participating communities.

The City of Lexington and Lee County unincorporated area do not have any repetitive loss properties. The City of Giddings has 1 residential repetitive loss properties.

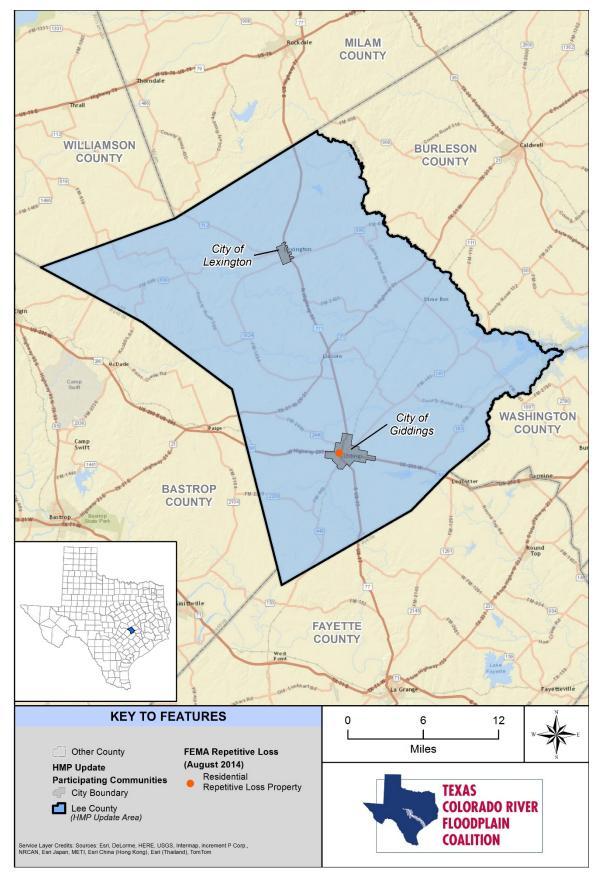


Figure 12-11. Repetitive Loss Properties in Lee County

12.6.3 Critical Facilities and Infrastructure

HAZUS-MH was used to estimate the flood loss potential to critical facilities exposed to the flood risk. Using depth/damage function curves to estimate the percent of damage to the building and contents of critical facilities, HAZUS-MH correlates these estimates into an estimate of functional down-time (the estimated time it will take to restore a facility to 100% of its functionality). This helps to gauge how long the planning area could have limited usage of facilities deemed critical to flood response and recovery.

The HAZUS critical facility analysis found that, on average, critical facilities would receive negligible damage to structure and contents during a 100-year or 500-year flood event. No significant functionality would be lost during these events.

12.6.4 Environment

The environment vulnerable to flood hazard is the same as the environment exposed to the hazard. Loss estimation platforms such as HAZUS-MH are not currently equipped to measure environmental impacts of flood hazards. The best gauge of vulnerability of the environment would be a review of damage from past flood events. Loss data that segregates damage to the environment was not available at the time of this plan. Capturing this data from future events could be beneficial in measuring the vulnerability of the environment for future updates.

12.7 FUTURE TRENDS IN DEVELOPMENT

Lee County and its planning partners are equipped to handle future growth within flood hazard areas. All municipal planning partners have plans and policies that address frequently flooded areas. All partners have committed to linking their plans to this hazard mitigation plan update. This will create an opportunity for sound watershed-wide land use decisions and floodplain management practices as future growth impacts flood hazard areas.

Additionally, all municipal planning partners are participants in the NFIP and have adopted flood damage prevention ordinances in response to its requirements. All municipal planning partners have committed to maintaining their good standing under the NFIP through initiatives identified in Section 6.9, Chapter 7, Section 12.6.2, and Table 19-2.

Recommended Mitigation Actions.

Urban flooding issues that contribute to flash floods are also a concern in more highly developed areas in Lee C ounty. J urisdictions in the c ounty a re r equired t o de velop a s tormwater permitting pr ogram a s mandated by the National Pollutant Discharge Elimination System. This program will help jurisdictions apply effective mitigation measures for stormwater runoff.

The recent dam modernization program on LCRA's dams meet required design safety standards to resist the water load and pressure of the PMF is a step in the right direction. There is, however, always some residual risk and it is expected that the emergency action plans for the dams will be maintained so the appropriate responses can be exercised in case of a dam failure.

12.8 SCENARIO

An intense, short-duration storm could move slowly across the planning area creating significant flash floods with little or no warning. Injuries or fatalities may result if residents are caught off guard by the flood event. S tormwater s ystems c ould be ov erwhelmed and s ignificant flooding c ould i mpact a substantial portion of structures within the planning area. Transportation routes could be cut off due to floodwaters, isolating portions of the planning area. These impacts may last after the floodwater recedes as flash floods in the area have been known to cause extensive damage to roadway infrastructure. Areas that have recently experienced wildfires would contribute to the extent of flooding impacts.

12.9 ISSUES

The major issues for flooding are the following:

- Flash flooding that occurs with little or no warning will continue to impact the planning area.
- The duration and intensity of storms contributing to flooding issues may increase due to climate change.
- Flooding may be exacerbated by other hazards, such as wildfires.
- Damages resulting from flood may impact tourism, which may have significant impacts on the local economy.
- The promotion of flood insurance as a means of protecting private property owners from the economic impacts of frequent flood events should continue.

CHAPTER 13. HURRICANES AND TROPICAL STORMS

HURRICANE AND TROPICAL STORM RANKING			
Lee County	Medium		
City of Giddings	Medium		
City of Lexington	Low		

13.1 GENERAL BACKGROUND

13.1.1 Hurricanes and Tropical Storms

The following description of hurricanes and tropical storms was summarized from the 2013 State of Texas Hazard Mitigation Plan.

DEFINITIONS

Hurricane — A tropical cyclone with maximum sustained surface winds (using the U.S. 1-minute average) of 64 knot (kt) (74 miles per hour [mph]) or more.

Tropical Storm — A tropical cyclone with maximum sustained surface wind speed (using the U.S. 1-minute average) ranges from 34 kt (39 mph) to 63 kt (73 mph).

Tropical Depression — A tropical cyclone with maximum sustained surface wind speed (using the U.S. 1-minute average) ranges from 4 kt (39 mph) to 63 kt (73 mph).

According to NOAA, tropical cyclones are classified into three main categories (per intensity): hurricanes, tropical storms, and tropical depressions.

The term hurricane is used for Northern Hemisphere tropical cyclones east of the International Dateline to the Greenwich Meridian. Hurricanes are any closed circulation developed around a low-pressure center in which the winds rotate counter-clockwise in the Northern Hemisphere (or clockwise in the Southern Hemisphere) and whose diameter averages 10 to 30 miles across. A tropical cyclone refers to any such circulation that develops over tropical waters. The key energy source for a tropical cyclone is the release of latent heat from the condensation of warm water. Their formation requires a low-pressure disturbance, warm sea surface temperature, rotational force from the spinning of the earth, and the absence of wind shear in the lowest 50,000 feet of the atmosphere.

Hurricanes are areas of disturbed weather in the tropics with closed isobars and strong and very pronounced rotary circulation. An area of clear weather called an "eye" is present in the center of the circulation. To qualify as a hurricane, the wind speed is 74 miles per hour (mph) or more. Hurricanes are classified into categories based on wind speed and the potential damage they cause. Thunderstorm rain resulting in urban flooding, battering wave action, intense sea level rise, localized coastal erosion, and significant winds are associated with hurricanes.

A tropical storm is a tropical cyclone in which the maximum sustained surface wind speeds range from 39 to 73 mph. At this time the tropical cyclone is assigned a name. During this time, the storm itself becomes more organized and begins to become more circular in shape, resembling a hurricane. Figure 13-1 illustrates historical hurricane paths affecting the entire study area.

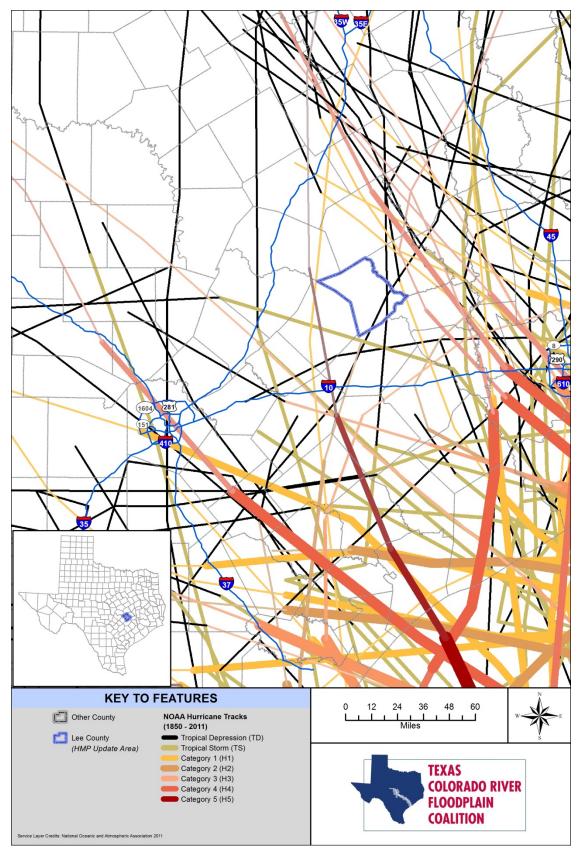


Figure 13-1. Historical Hurricane Paths Affecting Lee County

13.1.2 Hurricane and Tropical Storm Classifications

Hurricanes are classified according to the Saffir-Simpson Hurricane Wind Scale from a Category 1 to Category 5 by sustained wind intensity. Table 13-1 lists a description of each category.

	TABLE 13-1. SAFFIR-SIMPSON HURRICANE WIND SCALE				
Category	Sustained Winds (miles per hour)	Types of Damage Due to Hurricane Winds			
1	74-95	Very dangerous winds will produce some damage: Well-constructed frame homes could have damage to r oof, s hingles, v inyl s iding, and g utters. L arge br anches of t rees will s nap and shallowly rooted trees may be toppled. Extensive damage to power lines and poles likely will result in power outages that could last a few to several days.			
2	96-110	Extremely dangerous winds will cause extensive damage: Well-constructed frame homes could sustain major roof and siding damage. Many shallowly rooted trees will be snapped or uprooted and block numerous roads. Near-total power loss is expected with outages that could last from several days to weeks.			
3 (Major)	111-129	Devastating damage will occur: Well-built framed homes may incur major damage or removal of roof decking and gable ends. Many trees will be snapped or uprooted, blocking numerous roads. Electricity and water will be unavailable for several days to weeks after the storm passes.			
4 (Major)	130-156	Catastrophic damage will occur: Well-built framed homes can sustain severe damage with loss of most of the roof structure and/or some exterior walls. Most trees will be snapped or uprooted and power poles downed. Fallen trees and power poles will isolate residential areas. Power outages will last weeks to possibly months. Most of the area will be uninhabitable for weeks or months.			
5 (Major)	157 or higher	Catastrophic damage will occur: A high percentage of framed homes will be destroyed, with total roof failure and wall collapse. Fallen trees and power poles will isolate residential areas. Power outages will last for weeks to possibly months. Most of the area will be uninhabitable for weeks or months.			

Other non-hurricane classifications are tropical storms (39-73 miles per hour) and tropical depressions (0-38 miles per hour)

Source: http://www.nhc.noaa.gov/aboutsshws.php

13.2 HAZARD PROFILE

While hurricanes pose the greatest threat to life and property, tropical storms and depressions also can be devastating. Floods from heavy rains and severe weather, such as tornadoes, can cause extensive damage and loss of life. For example, Tropical Storm Allison produced over 40 inches of rain in the Houston area in 2001, causing approximately \$5 billion in damage and multiple fatalities.

13.2.1 Past Events

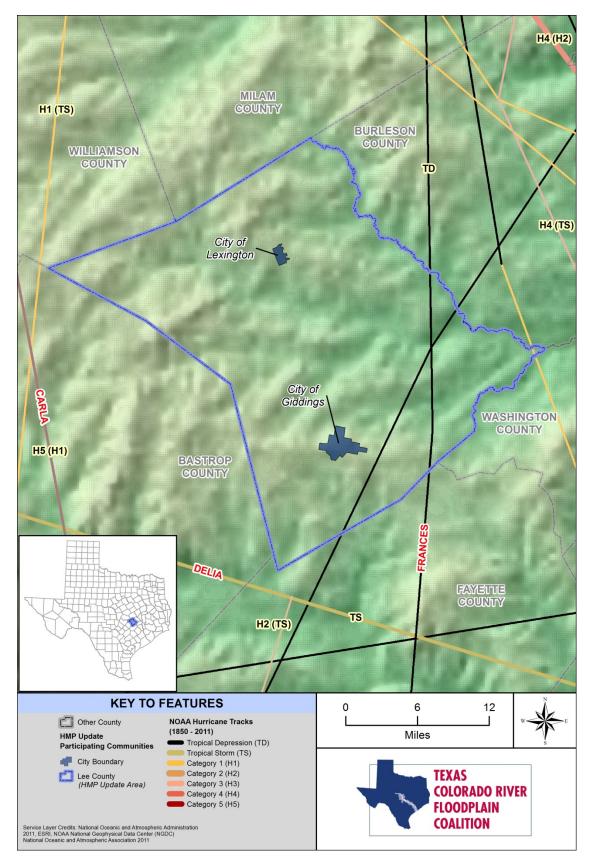
Due to Lee County's and participating communities' interior location (approximately 130 miles inland), it is not exposed directly to hurricanes. The hurricanes usually decrease in strength and downgrade to tropical storms or tropical depressions as they move away from the coast. According to NOAA, Lee County and the participating communities have been impacted by three Atlantic Hurricanes between 1851 and 2011. A record count of the 7 different hurricane categories within this time period shows 4 measured tropical depression conditions and 1 tropical storm condition. Notable hurricane, tropical storm, and depression

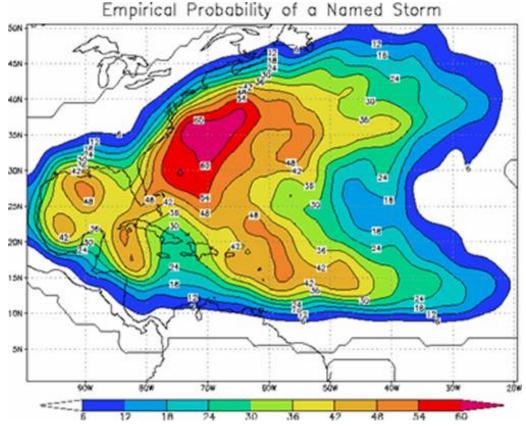
landfalls documented by NOAA between 1851 and 2015 for Lee County participating communities are described below:

- June 19, 1888 (Unnamed Tropical Storm) Maximum wind speeds were approximately 35 mph.
- June 22, 1960 (Unnamed Tropical Depression) Maximum wind speeds were approximately 20 mph.
- August 12, 1932 (Unnamed Category 1 hurricane) Maximum wind speeds were approximately 65 mph.
- September 8, 1998 (Tropical Storm Frances) Maximum wind speeds were around 30 mph at Lee County. Frances brought more than 15 inches of rainfall to portions of east Texas and 10 inches of rain to southern Louisiana.
- June 16 to 17, 201 5 (Tropical Storm Bill) Tropical Storm Bill made landfall on Matagorda Island, Matagorda County, Texas at 11:45 am. Its maximum sustained wind speed at landfall was 60 mph. Tropical Storm Bill moved inland and was downgraded to a tropical depression at 1:00 am on J une 17. A fter spending t hree d ays ov er l and a s a tropical de pression, B ill f inally transitioned into a p ost-tropical c yclone on the a fternoon of June 20 ov er eastern Kentucky. Although Bill brought coastal flooding and gusty winds to the Texas Coast at landfall, its primary impact was rainfall flooding. Peak rainfall totals from Bill were: 13.28 inches near El Campo, Texas; 12.53 inches near Healdton, Oklahoma; and 11.77 inches near Ganado, Texas. A Flash Flood Warning was issued for Lee County, but no serious flooding occurred. Approximately 1 to 3 inches of rain fell in Lee County during this event.

13.2.2 Location

A recorded event can occur anywhere in the HMP update area, moving inland from the Gulf of Mexico. Figure 13-2 illustrates historical hurricane paths effecting Lee County and participating communities. These hurricane events become tropical depressions or tropical storms by the time they reach the participating communities, except for the 1932 unnamed hurricane that impacted the HMP update area as a Category 1 hurricane. This hurricane made landfall as a Category 4 storm but dissipated before reaching Lee County and participating communities.




Figure 13-2. Historical Tropical Storms and Hurricanes Affecting Lee County

13.2.3 Frequency

Tropical storms are an annual event occurring from May through November in either the Gulf of Mexico or the Atlantic Ocean. The peak of the Atlantic hurricane season is in early- to mid-September. On average, approximately six storms reach hurricane intensity each year. Hurricanes appear to be less frequent during La Niña periods and more prevalent during strong El Niño periods. El Niño, and La Niña, its counterpart, refer to climate conditions i n the P acific O cean t hat i nfluence w eather p atterns i n Texas. El Niño is associated with warmer sea surface temperatures and high air pressure systems, while La Niña is associated with cooler ocean temperatures and low air pressure systems. These changes in water temperature and air pressure systems occur in somewhat regular intervals, with El Niño periods having longer durations. Figure 13-3 illustrates the probability of a named tropical storm event throughout the U.S. Between 1851 and 2015, Lee C ounty and p articipating communities ex perienced 5 tropical events. This r elates t o a frequency occurrence of approximately 0.03 events per year (an unlikely event; not probable in the next 10 years).

Future Probability

Lee County and participating experienced the effects of 5 tropical events. An event is highly unlikely (~0.03 events per year) for Lee County and participating communities.

Source: http://www.prh.noaa.gov/cphc/pages/FAQ/Climatology.php

Figure 13-3. Probability of Named Tropical Storm Event

13.2.4 Severity

Historic events indicate that a hurricane will affect Lee County and participating communities as tropical depressions, tropical storms, hail, lightning, or related weather events (high winds, tornado). These hazards are discussed in more detail in Chapter 14.

13.2.5 Warning Time

Meteorologists can often predict the likelihood and path of a hurricane or tropical storm. Meteorologists can give several days of warning before a storm. However, meteorologists cannot predict the exact time of onset or severity of the storm. At times, warning for the onset of severe weather may be limited. People generally rely on weather forecasts from the City of Giddings.

13.3 SECONDARY EVENTS

Secondary events asso ciated with a h urricane reaching Lee C ounty and participating c ommunities a re similar to that of a tropical storm, depression, or related weather event (such as wind, hail, or lightning). By the time a hurricane reaches Lee County and participating communities it will be more closely classified as a secondary weather thunderstorm event (such as wind, hail, or lightning). These are the secondary events of a hurricane or tropical event. The most significant secondary hazards associated with severe local storms are floods, falling and downed trees, and downed power lines. Landslides occur when the soil on s lopes becomes oversaturated and fails. Fires can occur as a result of lightning strikes. High winds from the storm can turn debris into flying projectiles. Debris carried by high winds can also result in injury or damage to property. The lack of proper management of trees may exacerbate damage from high winds. The damage to the infrastructure and land of Lee County may impact other industries such as tourism and agriculture. The City of Giddings holds the Charcoal Challenge Barbecue Festival in the spring, and Chocolate Lovers Festival in the fall. The City of Giddings lies at the cross roads of at least two major railroads and depots and is called the Depot Capital of Texas by the Texas Legislature. Giddings is home to the Rural Texas Tourism Center.

13.4 CLIMATE CHANGE IMPACTS

It's unclear whether climate change will increase or decrease the frequency of hurricanes and tropical storms, but warmer ocean surface temperatures and higher sea levels are expected to intensify their impacts. Hurricanes are subject to various climate change-related influences. Warmer sea surface temperatures could intensify tropical storms wind speeds, potentially delivering more damage if they make landfall. Based on sophisticated computer modeling, scientists expect a 2 to 11% increase in average maximum wind speed, with increased frequency of intense storms. Rainfall rates during these storms are also projected to increase by approximately 20%.

In addition, sea level rise is likely to make future coastal storms, including hurricanes, more damaging. Globally averaged, sea level is expected to rise by 1 to 4 feet during the next century, which will amplify coastal storm surge. For example, sea level rise intensified the impact of Hurricane Sandy, which caused an estimated \$65 billion in damages in New York, New Jersey, and Connecticut in 2012. Much of this damage was related to coastal flooding (Center for Climate and Energy Solutions no date).

13.5 EXPOSURE

Property, population, and the natural environment are all exposed to hurricanes and tropical storms, however by the time such an event reaches Lee County it will be more closely classified as a tropical storm, depression, or related event (such as hail, high winds, or lightning). The entire population of the planning area would be affected by the tropical storm or tropical depression to some degree. Business interruption could keep people from working, road closures could isolate populations, and loss of functions of utilities could impact populations that suffered no direct damage form an event. Table 13-2 lists the exposed structures a nd population t o hur ricanes, tropical s torms, a nd t ropical de pressions per p articipating community.

TABLE 13-2. EXPOSED STRUCTURES AND POPULATION								
Jurisdiction	Residential	Commercial	Other *	Total Structures	Total Populatior			
City of Giddings	1,590	62	22	1,674	1,473			
City of Lexington	524	8	1	533	336			
Unincorporated Area	4,921	16	17	4,954	2,536			
Planning Area Total	7,035	86	40	7,161	4,345			

13.6 VULNERABILITY

The Level 1 HAZUS-MH protocol was used to assess the vulnerability of the planning area to hurricanes and tropical storms. The model used U.S. Census data at the tract level and modeled storms initiated in the Atlantic Ocean, Caribbean Sea, Gulf of Mexico, and eastern and central Pacific Ocean. The HAZUS-MH default data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs) were used.

HAZUS-MH calculates losses to structures from hurricanes by looking at wind speeds, winds tracks, and amount of precipitation. Using historical storm data, HAZUS-MH estimates probabilistic storm scenarios. The historic storm database contains precomputed wind fields and storm track for Category 3, 4, and 5 land falling hurricanes from 1900 to 2010. For this analysis, a probabilistic HAZUS-MH hurricane scenario was selected. Peak gust wind speeds for the 100-year probabilistic scenario are between 65 m ph to 80 mph (Figure 13-4). Less than 1% of the buildings (mostly residential) are expected to sustain moderate damages for this sc enario. The annualized eco nomic loss estimated for this probabilistic h urricane scenario is approximately \$5.8 million, which represents less than 0.22% of the total replacement value of the building value for each participating community.

Table 13-3 lists the vulnerable population per participating community. Table 13-4 list the impact in terms of dollar losses.

	TABLE 13-3. VULNERABLE POPULATION									
Jurisdiction	Youth Population (< 16)	% of Total Population	Elderly Population (>65)	% of Total Population	Economically Disadvantage (Income < \$20,000)	% of Total Population				
City of Giddings	1,473	30.18	706	14.46	366	7.50				
City of Lexington	336	28.55	167	14.19	74	6.29				
Unincorporated Area	2,536	24.03	1,749	16.57	641	6.07				
Planning Area Total	4,345	26.16	2,622	15.78	1,081	6.51				

TABLE 13-4. LOSS ESTIMATES FOR HURRICANE EVENT							
	Annualized Loss (\$)				% of Total Exposed		
	Structure	Contents	Total		Value		
City of Giddings	12,448	2,006	14,454	\$871,346,709	0.00		
City of Lexington	318	Negligible	318	\$177,669,507	0.00		
Unincorporated Area	229,594	35,165	264,759	\$1,645,914,085	0.02		
Planning Area Total	242,360	37,171	279,531	\$2,694,930,301	0.01		

Vulnerability Narrative

All participating communities are equally at risk to hurricanes, tropical storms, and tropical depressions. The extent of a hurricane event for each jurisdiction is described below.

- **City of Giddings** Probabilistic Peak Wind Gusts for the City of Giddings are approximately 83 mph. Approximately less than 20% of the City's housing are manufactured homes. Mobile homes and older homes constructed without the use of building codes are more vulnerable to the effects of h urricanes. D ebris (such as s ignage and non-permanent st ructures) c an b ecome ex tremely dangerous flying debris during an event. If major transportation means were to become blocked or unusable (i.e. FM 696 or US 77), all residents would be at a greater risk due to decreased mobility and i ncreased response t imes. S ince few tropical events r each this far i nland, m any residents may not be as prepared or knowledgeable of hurricane preparedness and response. Those uninformed or unable to receive emergency notifications (such as CAPCOG's Reverse 911) are more vulnerable to experience damages as well.
- **Town of Lexington** Probabilistic Peak Wind Gusts for the Town of Lexington are approximately 73 mph. Approximately less than 24% of Lexington's housing are manufactured homes. Mobile High winds caused by a tropical event can cause significant damage to properties and turn non-secured structures and objects into flying de bris. Older homes constructed without the use of building codes are vulnerable as well. Mobile homes are more susceptible to damages because of strong winds t hat ac company t ropical st orm events. R esidents and p roperty n ot p art of an emergency plan or unaware of emergency procedures and preventative actions are at a greater risk.
- Lee County (Unincorporated Area) Probabilistic Peak Wind Gusts for the Unincorporated Areas of Lee County range from 73-83 mph. Approximately less than 26% of the area's housing are manufactured homes. Mobile Hurricane and tropical winds can cause damage to property throughout the County. Residents unaware of the hazards or their risks associated with hurricanes are at a greater risk and will be less able to integrate at home preparedness. Residents and property not implementing hazard mitigation into local planning are more vulnerable as well. If major transportation means were to become blocked or unusable (i.e. US 77 or US 290), all residents would be more vulnerable due to decreased mobility and increased emergency response times.

Community Perception of Vulnerability

See front page of current chapter for a summary of hazard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

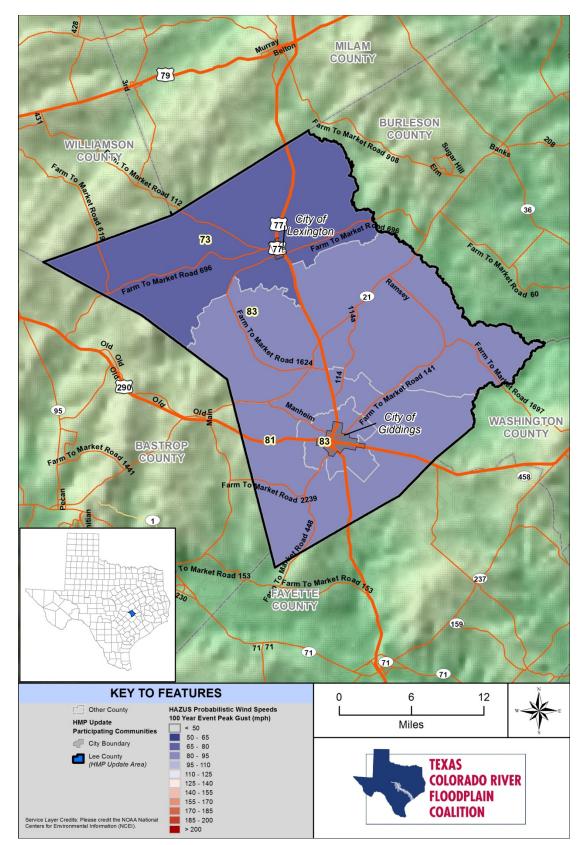


Figure 13-4. 100-Year Probabilistic Peak Wind Gusts for Lee County

13.7 FUTURE TRENDS IN DEVELOPMENT

The threat of tropical storms is constant in Texas. From the Gulf of Mexico coastline to Central Texas, the adverse effects of tropical storms and hurricanes will be felt. Tropical storms and hurricanes may cause billions of dollars in damages. Hurricane trends change yearly and with the unclear effects of climate change on tropical developments, future trends are difficult to predict. NOAA's 2015 hurricane season outlook predicted that a below-normal Atlantic hurricane season is likely. This outlook called for a 70% chance of a below-normal season, a 25% chance of a near-normal season, and only a 5% chance of an above-normal season. However, Global Weather Oscillations Inc., a leading hurricane cycle prediction company, says "The 2015 Atlantic Basin hurricane season will be the most active and dangerous in at least 3 years, and the next 3 seasons will be the most dangerous in 10 years." Therefore it is important for communities and community leaders to remain alert and informed of seasonal predictions and developments.

13.8 SCENARIO

A worst case scenario would be for a very large and severe hurricane to make landfall at the Texas Gulf Coast near Matagorda County then proceed directly to Lee County and the participating communities. Such a powerful storm at landfall would have significant impacts from Matagorda County and beyond to Lee County. This storm could cause severe flooding, tornadoes, and wind damage to infrastructure throughout the county. This could significantly slow emergency response time and cause public utilities to be offline for weeks. A large of a storm would leave a large path of damage across South and Central Texas, straining resources throughout the county and state. However, this event is unlikely as Lee County's inland location typically mitigates the potential for extensive damage from hurricanes and tropical storms.

13.9 ISSUES

Important issues associated with a tropical storm in Lee County and the participating communities include the following:

- Older building stock in the planning area is built to low code standards or none at all. These structures could be highly vulnerable to severe weather events such as hurricanes and tropical storms.
- Redundancy of power supply must be evaluated.
- The potential for isolation after a severe storm event is high.
- Flash flooding that occurs with little or no warning will continue to impact the planning area.
- The promotion of flood insurance as a means of protecting private property owners from the economic impacts of frequent flood events should continue.
- Roads and bridges blocked by debris or otherwise damaged might isolate populations.
- Warning time may not be adequate for residents to seek appropriate shelter or such shelter may not be widespread throughout the planning area.
- The impacts of climate change on the frequency and severity of hurricanes and tropical storms are not well understood.

CHAPTER 14. LIGHTNING, HAIL, AND WIND

LIGHTNING, HAIL, AND WIND RANKING							
Lightning Hail Wind							
Lee County	Medium	High	Medium				
City of Giddings	High	High	Medium				
City of Lexington	High	High	Low				

14.1 GENERAL BACKGROUND

14.1.1 Lightning, Hail, and Wind

A thunderstorm is a rain event that includes thunder, wind, hail, and lightning. A thunderstorm is classified as "sev ere" w hen i t co ntains o ne o r m ore o f t he following: hail with a diameter of three-quarter inch or greater, winds gusting in excess of 50 knots (kt) (57.5 mph), or tornadoes. F or this hazard mitigation p lan, each c omponent of a t hunderstorm (lightning, hail, and winds) will be profiled below. Thunderstorms, as a whole, is not a T exas State Hazard per the T exas State Mitigation Plan Update 2013. 'Thunderstorm' is used in this section as a d escriptive term t o qualify hail, wind, a nd lightning atmospheric events. Thunderstorms ar e d escribed b elow for g eneral reference information and not a profiled hazard.

Three factors cause thunderstorms to form: moisture,

DEFINITIONS

Severe Local Storm — Small-scale atmospheric systems, including tornadoes, thunderstorms, windstorms, ice storms, and snowstorms. These storms may cause a great deal of destruction and even death, but their impact is generally confined to a small area. Typical impacts are on transportation infrastructure and utilities.

Thunderstorm — A storm featuring heavy rains, strong winds, thunder and lightning, typically about 15 miles in diameter and lasting about 30 minutes. Hail and tornadoes are also dangers associated with thunderstorms. Lightning is a serious threat to human life. Heavy rains over a small area in a short time can lead to flash flooding.

Windstorm — A storm featuring violent winds. Windstorms tend to damage ridgelines that face into the wind.

rising unstable air (air that keeps rising when disturbed), and a lifting mechanism to provide the disturbance. The sun heats the surface of the earth, which warms the air above it. If this warm surface air is forced to rise (hills or mountains can cause rising motion, as can the interaction of warm air and cold air or wet air and dry air) it will continue to rise as long as it weighs less and stays warmer than the air around it. As the air rises, it transfers heat from the surface of the earth to the upper levels of the atmosphere (the process of convection). The water vapor it contains begins to cool and it condenses into a cloud. The cloud eventually grows upward into areas where the temperature is below freezing. Some of the water vapor turns to ice and some of it turns into water droplets. Both have electrical charges. Ice particles usually have positive charges, and rain droplets usually have negative charges. When the charges build up enough, they are discharged in a bolt of lightning, which causes the sound waves we hear as thunder. Thunderstorms have three stages (see Figure 14-1):

- The **developing stage** of a thunderstorm is marked by a cumulus cloud that is being pushed upward by a rising column of air (updraft). The cumulus cloud soon looks like a tower (called towering cumulus) as the updraft continues to develop. There is little to no rain during this stage but occasional lightning. The developing stage lasts about 10 minutes.
- The thunderstorm enters the **mature stage** when the updraft continues to feed the storm, but precipitation begins to fall out of the storm, and a downdraft begins (a column of air pushing

downward). When the downdraft and rain-cooled air spread out along the ground, they form a gust front, or a l ine of gusty winds. The mature stage is the most likely time for hail, heavy rain, frequent lightning, strong winds, and tornadoes. The storm occasionally has a black or dark green appearance.

• Eventually, a large a mount of p recipitation is produced and the upd raft is overcome by the downdraft beginning the **dissipating stage**. At the ground, the gust front moves out a long distance from the storm and c uts off the w arm m oist air t hat w as feeding the thunderstorm. R ainfall decreases in intensity, but lightning remains a danger.

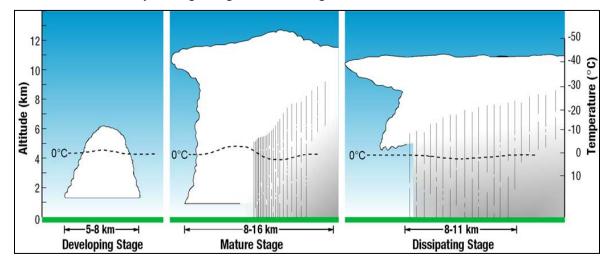


Figure 14-1. Thunderstorm Life Cycle

There are four types of thunderstorms:

- Single-Cell Thunderstorms—Single-cell thunderstorms usually last 20 to 30 minutes. A true single-cell storm is rare, because the gust front of one cell often triggers the growth of another. Most single-cell storms are not usually severe, but a single-cell storm can produce a brief severe weather event. When this happens, it is called a pulse severe storm.
- **Multi-Cell Cluster Storm**—A multi-cell cluster is the most common type of thunderstorm. The multi-cell cluster consists of a group of cells, moving as one unit, with each cell in a different phase of the thunderstorm life cycle. Mature cells are usually found at the center of the cluster and dissipating cells at the downwind edge. Multi-cell cluster storms can produce moderate-size hail, flash floods, and weak tornadoes. Each cell in a multi-cell cluster lasts only about 20 minutes; the multi-cell cluster itself may persist for several hours. This type of storm is usually more intense than a single cell storm.
- **Multi-Cell Squall Line**—A multi-cell line storm, or squall line, consists of a long line of storms with a continuous well-developed gust front at the leading edge. The line of storms can be solid, or there can be gaps and breaks in the line. Squall lines can produce hail up to golf-ball size, heavy rainfall, and weak tornadoes, but they are best k nown as the producers of strong downdrafts. Occasionally, a strong downburst will accelerate a portion of the squall line ahead of the rest of the line. This produces what is called a bow echo. Bow echoes can develop with isolated cells as well as squall lines. Bow echoes are easily detected on radar but are difficult to observe visually.
- Super-Cell Storm—A super-cell is a highly organized thunderstorm that poses a high threat to life and property. It is similar to a single-cell storm in that it has one main updraft, but the updraft is extremely strong, reaching speeds of 150 to 175 mph. Super-cells ar e r are. T he main characteristic that sets them ap art from o ther t hunderstorms is the p resence of r otation. The rotating updraft of a super-cell (called a mesocyclone when visible on radar) helps the super-cell

to produce extreme weather events, such as giant hail (more than 2 inches in diameter), strong downbursts of 80 mph or more, and strong to violent tornadoes.

14.1.2 Lightning

Lightning is an electrical discharge between positive and negative regions of a thunderstorm. A lightning flash is composed of a series of strokes with an average of about four. The length and duration of each lightning stroke vary, but typically average about 30 microseconds.

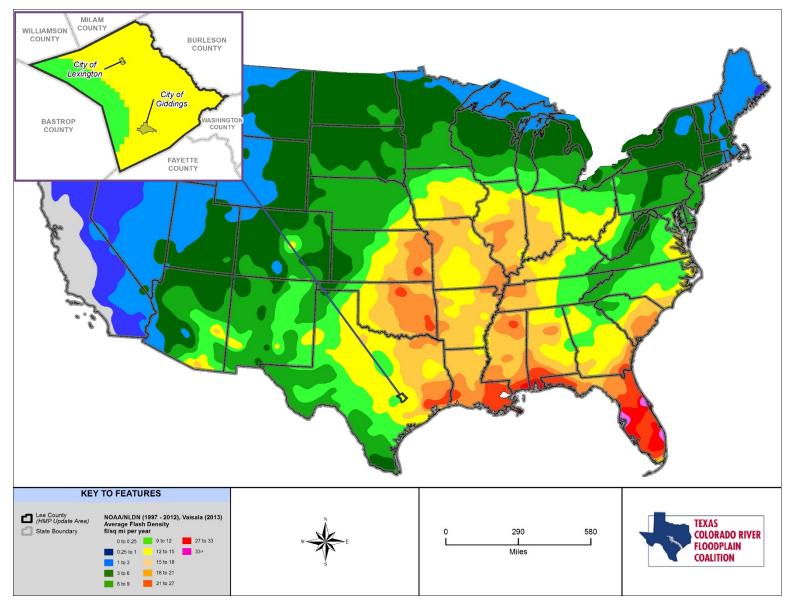
Lightning is one of the more dangerous and unpredictable weather hazards in the U.S. and in Texas. Each year, lightning is responsible for deaths, injuries, and millions of dollars in property damage, including damage to buildings, communications systems, power lines and electrical systems. Lightning also causes forest and brush fires as well as deaths and injuries to livestock and other animals. According to the National Lightning Safety Institute, lightning strikes the U.S. about 25 million times each year and causes more than 26,000 fires nationwide each year. The institute estimates property damage, increased op erating c osts, production delays, and lost revenue from lightning and secondary effects to be in excess of \$6 billion per year. Impacts can be direct or indirect. People or objects c an be directly struck, or damage can o ccur indirectly when the current passes through or near it.

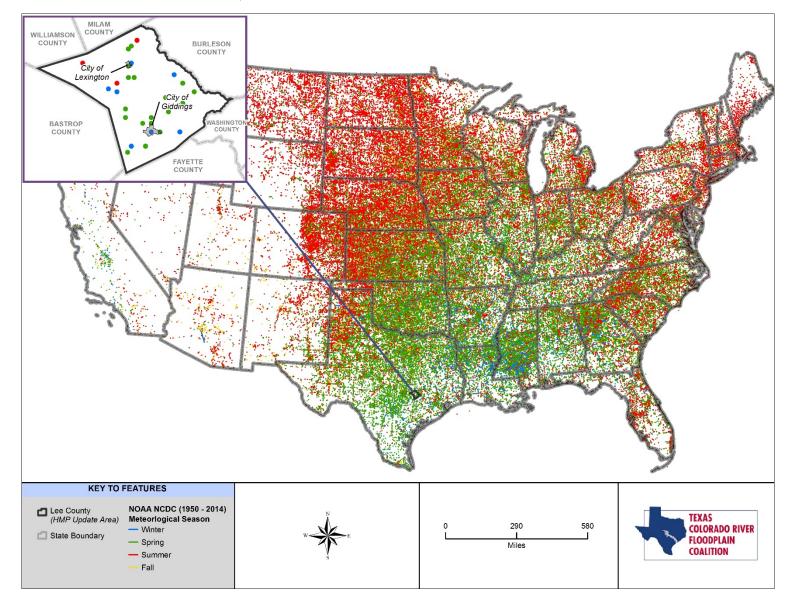
Intra-cloud lightning is the most common type of discharge. This occurs between oppositely charged centers within the same cloud. Usually it takes place inside the cloud and looks from the outside of the cloud like a diffuse brightening that flickers. However, the flash may exit the boundary of the cloud, and a bright channel can be visible for many miles.

Although not as common, cloud-to-ground lightning is the most damaging and dangerous form of lightning. Most flashes originate near the lower-negative charge center and deliver negative charge to earth. However, a minority of flashes carry positive charge to earth. These positive flashes often occur during the dissipating stage of a thunderstorm's life. Positive flashes are also more common as a percentage of total ground strikes during the winter months. This type of lightning is particularly dangerous for several reasons. It frequently strikes away from the rain core, either ahead or behind the thunderstorm. It can strike as far as 5 or 10 miles from the storm in areas that most people do not consider to be a threat. Positive lightning also has a longer duration, so fires are more easily ignited. And, when positive lightning strikes, it usually carries a high peak electrical current, potentially resulting in greater damage.

The ratio of c loud-to-ground a nd i ntra-cloud l ightning c an v ary s ignificantly f rom s torm t o s torm. Depending upon cloud height above ground and changes in electric field strength between cloud and earth, the discharge stays within the cloud or makes direct contact with the earth. If the field strength is highest in the lower regions of the cloud, a downward flash may occur from cloud to earth. Using a network of lightning detection systems, NOAA monitors a yearly average of 25 million strokes of lightning from the cloud-to-ground. Figure 14-2 shows the lightning flash density for the nation.

U.S. lightning statistics compiled by NOAA between 1959 and 1994 indicate that most lightning incidents occur during the summer months of June, July, and August, and during the afternoon hours from between 2 and 6 p.m.




Figure 14-2. Average Annual National Lightning Density

14.1.3 Hail

Hail occurs when u pdrafts in thunderstorms c arry r aindrops u pward into extremely c old a reas of the atmosphere where they freeze into ice. Figure 14-3 shows the hail path across the nation, Lee County and participating communities. R ecent studies su ggest t hat su per-cooled w ater m ay a ccumulate on f rozen particles near the back-side of a storm as they are pushed forward across and above the updraft by the prevailing winds near the top of the storm. Eventually, the hailstones encounter downdraft air and fall to the ground.

Hailstones grow two ways: by wet growth or dry growth. In wet growth, a tiny piece of ice is in an area where the air temperature is below freezing, but not super cold. When the tiny piece of ice collides with a super-cooled drop, the water does not freeze on the ice immediately. Instead, liquid water spreads across tumbling hailstones and slowly freezes. Since the process is slow, air bubbles can escape, resulting in a layer of clear ice. Dry growth hailstones grow when the air temperature is well below freezing and the water droplet freezes immediately as it collides with the ice particle. The air bubbles are "frozen" in place, leaving cloudy ice.

Hailstones can have layers like an onion if they travel up and down in an updraft, or they can have few or no layers if they are "balanced" in an updraft. One can tell how many times a hailstone traveled to the top of the storm by counting its layers. Hailstones can begin to melt and then re-freeze together, forming large and very irregularly shaped hail. NWS classifies hail as non-severe and severe based on hail diameter size. Descriptions and diameter sizes are provided in Table 14-1.

Source: NOAA's NWS Storm Prediction Center Severe Report Database 1950 – 2013

Figure 14-3. National Hail Paths

TABLE 14-1. NATIONAL WEATHER SERVICE HAIL SEVERITY Unit Diameter						
Severity	Description	Hail Diameter Size (in inches)				
Non-Severe Hail	Pea	1/4"				
Does not typically cause damage and does not warrant	Plain M&M Candy	1/2"				
severe thunderstorm warning from National Weather	Penny	3/4"				
Service.	Nickel	7/8"				
Severe Hail	Quarter	1" (severe)				
	Half Dollar	1 1/4"				
	Walnut/Ping Pong Ball	1 1/2"				
	Golf Ball	1 3/4"				
Research has shown that damage occurs after hail	Hen Egg/Lime	2"				
reaches around one inch in diameter and larger.	Tennis Ball	2 1/2"				
Hail of this size will trigger a severe thunderstorm warning from National Weather Service.	Pea1/4"Oes not warrant tional WeatherPea1/4"Plain M&M Candy1/2"Penny3/4"Nickel7/8"Quarter1" (severe)Half Dollar1 1/4"Walnut/Ping Pong Ball1 1/2"Golf Ball1 3/4"Hen Egg/Lime2"Tennis Ball2 1/2"Baseball2 3/4"Teacup/Large Apple3"Grapefruit4"	2 3/4"				
	Teacup/Large Apple	3"				
	Grapefruit	4"				
	Softball	4 1/2"				
	Computer CD-DVD	4 3/4"- 5"				

NOAA's National Severe Storms Laboratory used historical data to estimate the daily probability of hail occurrences across the U.S., regardless of storm magnitude. Figure 14-4 shows the average number of hail days per year. The density per 25 square miles in the map's legend indicates the probable number of hail days for each 25 square mile cell within the contoured zone that can be expected over a similar period of record. It should be noted that the density number does NOT indicate the number of events that can be expected across the entire zone on the map.

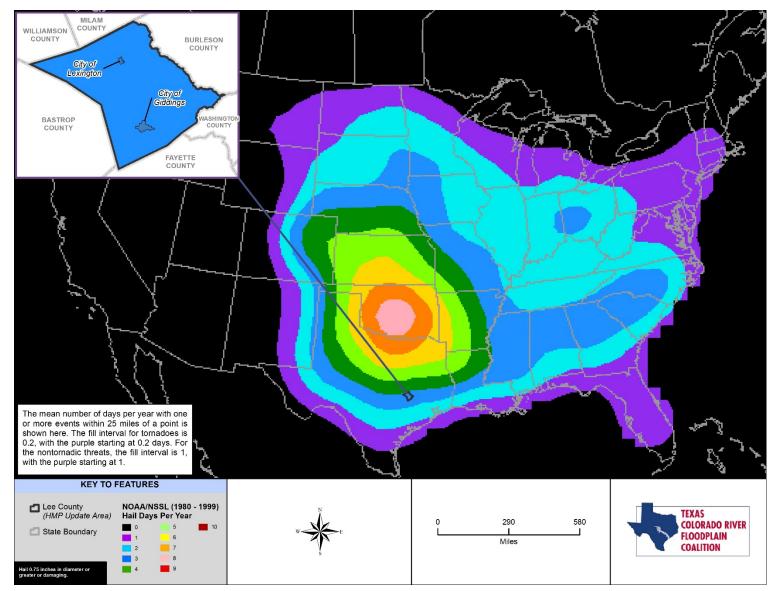


Figure 14-4. National Hail Days per Year

14.1.4 Wind

Damaging winds are classified as those exceeding 60 mph. Figure 14-5 shows the wind zones in the nation. NOAA's NWS Storm Prediction Center Severe Report Database has wind inventory from 1955 to 2014. Figure 14-6 shows the thunderstorm wind paths. Damage from such winds accounts for half of all severe weather reports in the lower 48 states and is more common than damage from tornadoes. Wind speeds can reach up to 100 mph and can produce a damage path extending for hundreds of miles. There are seven types of damaging winds:

- **Straight-line winds**—Any thunderstorm wind that is not associated with rotation; this term is used mainly to differentiate from tornado winds. Most thunderstorms produce some straight-line winds as a result of outflow generated by the thunderstorm downdraft.
- **Downdrafts**—A small-scale column of air that rapidly sinks toward the ground.
- **Downbursts**—A strong downdraft with horizontal dimensions larger than 2.5 miles resulting in an outward burst or damaging winds on or near the ground. Downburst winds may begin as a microburst and spread out over a wider area, sometimes producing damage similar to a strong tornado. Although usually associated with thunderstorms, downbursts can occur with showers too weak to produce thunder.
- Microbursts—A s mall c oncentrated d ownburst that produces a n outward burst of da maging winds at the surface. Microbursts are generally less than 2.5 miles across and short-lived, lasting only 5 t o 10 m inutes, with m aximum wind s peeds up t o 168 m ph. T here a re two ki nds of microbursts: wet and dry. A wet microburst is accompanied by heavy precipitation at the surface. Dry microbursts, common in places like the high plains and the intermountain west, occur with little or no precipitation reaching the ground.
- **Gust front**—A g ust f ront i s t he l eading ed ge o f r ain-cooled a ir t hat c lashes w ith w armer thunderstorm inflow. Gust fronts are characterized by a wind shift, temperature drop, and gusty winds out ahead of a thunderstorm. Sometimes the winds push up air above them, forming a shelf cloud or detached roll cloud.
- **Derecho**—A derecho is a widespread thunderstorm wind caused when new thunderstorms form along the leading edge of an outflow boundary (the boundary formed by horizontal spreading of thunderstorm-cooled air). The word "derecho" is of Spanish origin and means "straight ahead." Thunderstorms feed on the boundary and continue to reproduce. Derechos typically oc cur in summer when complexes of thunderstorms form over plains, producing he avy rain and severe wind. The damaging winds can last a long time and cover a large area.
- **Bow Echo**—A bow echo is a linear wind front bent outward in a bow shape. Damaging straightline winds often occur near the center of a bow echo. Bow echoes can be 200 miles long, last for several hours, and produce extensive wind damage at the ground.

NOAA's National Severe Storms Laboratory used historical data to estimate the daily probability of wind occurrences across the U.S., regardless of storm magnitude. Figure 14-7 shows the estimates for damaging winds with 50 kts or greater. The density per 25 square miles in the map's legend indicates the probable number of wind for each 25 square mile cell within the contoured zone that can be expected over a similar period of record. It should be noted that the density number does NOT indicate the number of events that can be expected across the entire zone on the map.

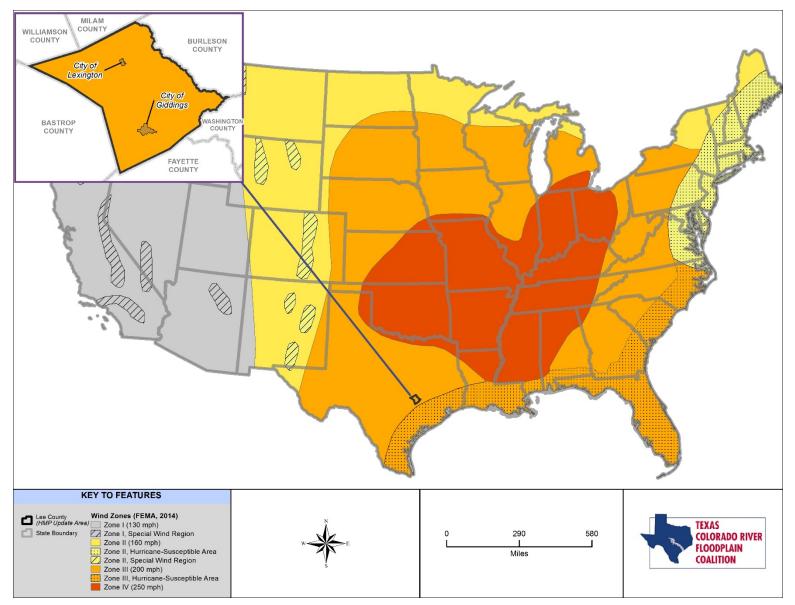


Figure 14-5. National Wind Zones

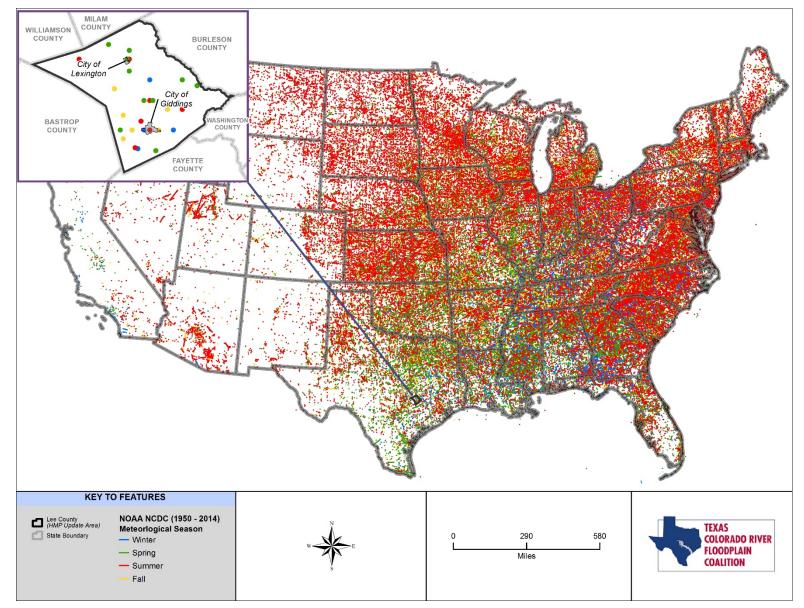


Figure 14-6. National High Wind Paths

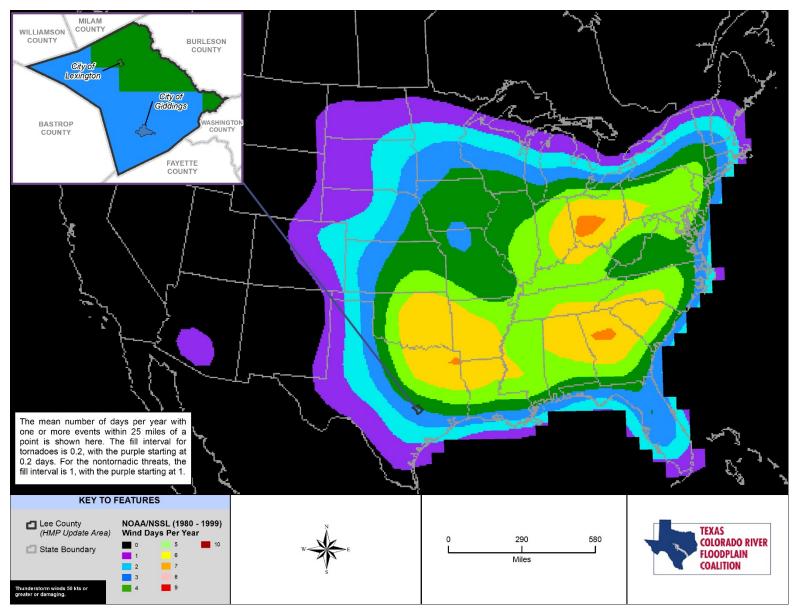


Figure 14-7. National Annual High Wind Days

14.2 HAZARD PROFILE

14.2.1 Past Events

Lightning

Data from the National Lightning Detection Network ranks Texas second in the nation (excluding Alaska and Hawaii) with respect to the number of cloud-to-ground lightning flashes. On average, Texas has more than 2,892,486 cloud-to-ground lightning strikes per year with higher lightning frequency in the western part of the state. Lee County and participating communities have an average of 12 to 15 lightning flashes per square mile per year as shown in Figure 14-2. The National Climatic Data Center Severe Weather Data Inventory documents that 159,951 cloud-to-ground lightning flashes have be en reported in Lee County from 1986 to 2013. Using an area weighted average, it is estimated that the Lee County Unincorporated Area experienced 158,339 doud-to-ground lightning flashes; the City of Giddings experienced 1,296 doud-to-ground lightning f lashes; and the Town of L exington e xperienced 3,014 c loud-to-ground lightning flashes during this same time period (1986-2013).

Figure 14-8 shows state-by-state lightning deaths between 1959 and 2013. Texas ranks second for the number of deaths at 217. Only Florida, with 471 deaths, had more. Texas has a 0.25 death rate per million people from lightning strikes according to 1959 to 2013 data published by NWS.

According to the National Climatic Data Center Storm Events Database as well as locally available data. There were no damaging events, reported injuries, or fatalities from lightning in Lee County or participating communities between 19 50 and 201 4. There were no r ecorded l ightning events f or L ee C ounty Unincorporated Areas per the NCDC Storm Event Database and local resources.

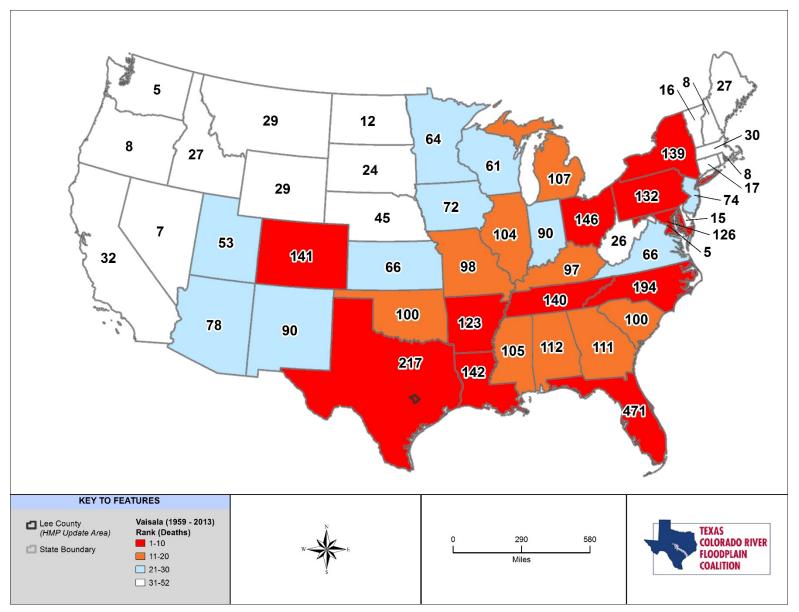


Figure 14-8. Lightning Fatalities in the U.S. (1959-2013)

Hail

The National Climatic Data Center Storm Events Database lists 37 hail events in Lee County between 1960 and 2014. These events are noted in Table 14-2. None of these events resulted in injuries or deaths. Events listed as 'Lee County' in Table 14-2 affected large portions of the HMP update area. Large systems may have a ffected a dditional jurisdictions. These are a lso included in Table 14-2. Specific events for the participating communities are described below.

Event Descriptions

City of Giddings- The City of Giddings had 12 significant events from 1960 to 2014. Three significant events are described below.

- On March 25 1993, up to dime-size hail was reported in Giddings by a TV-36 Stormtracker. Two auto dealerships in Giddings reported significant damage to their stock. Several cars in town had windshields broken out and several homes had roof damage.
- On March 10, 2000, large, very dense hail, propelled by winds estimated at 30 to 40 mph caused widespread damage to vehicles from northeast of Giddings to near Dime Box.
- On May 12, 2000, the combination of strong thunderstorm winds estimated at 40 to 50 mph and hail up to an inch in diameter destroyed crops just east of Giddings.

City of Lexington - The City of Lexington had 8 significant events from 1960 to 2014. Three significant events are described below.

- On December 23, 2002, damage was reported to roofs and windows of buildings as well as to vehicles in the Lexington area by the softball-sized hail.
- On April 25, 2008, a weak cold front moved into the hill country during max heating with temperatures in the upper 80s and lower 90s. Convection fired along the cold front and a line of storms moved slowly southward across the area.
- On March 27, 2009, an isolated severe thunderstorm developed over Lee County and produced a small amount of hail.

Lee County (Unincorporated Areas)- The Unincorporated Areas of Lee County had 51 significant events from 1960 to 2014. Three significant events are described below.

- On September 3, 1992, half dollar sized hail was reported. No damage, injuries, or fatalities were reported as a part of this hail event.
- On April 19, 1992, quarter sized hail was reported. No damage, injuries, or fatalities were reported as a part of this hail event.
- On April 17, 1991, 1.75 in. hail did damage to several cars and buildings, knocking out skylights and car windshields. No injuries, or fatalities were reported.

TABLE 14-2. HISTORIC HAIL EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (1955-2014)							
Location	Date	Event Type	Hail Size	Estimated Cos	st	Injuries	Deaths
			Size	Property	Crops		
LEE CO.	04/27/1958	Hail	2	\$0	\$0	0	0

Location	Date	Event Type	Hail Size	Estimated Damage Cost		Injuries	Deaths
				Property	Crops		
LEE CO.	04/29/1963	Hail	1.5	\$0	\$0	0	0
LEE CO.	05/05/1975	Hail	1.75	\$0	\$0	0	0
LEE CO.	04/07/1980	Hail	1.75	\$0	\$0	0	0
LEE CO.	05/09/1981	Hail	1	\$0	\$0	0	0
LEE CO.	05/18/1981	Hail	1	\$0	\$0	0	0
LEE CO.	02/10/1985	Hail	1.75	\$0	\$0	0	0
LEE CO.	02/10/1985	Hail	1.75	\$0	\$0	0	0
LEE CO.	06/07/1989	Hail	1.75	\$0	\$0	0	0
LEE CO.	04/24/1990	Hail	1.25	\$0	\$0	0	0
LEE CO.	04/13/1991	Hail	2.75	\$0	\$0	0	0
LEE CO.	04/17/1991	Hail	1.75	\$0	\$0	0	0
LEE CO.	04/19/1992	Hail	1.25	\$0	\$0	0	0
LEE CO.	09/03/1992	Hail	1.25	\$0	\$0	0	0
LEXINGTON	01/21/1998	Hail	1.75	\$10,000	\$0	0	0
OLD DIME BOX	01/22/1999	Hail	1.75	\$0	\$0	0	0
LINCOLN	05/10/1999	Hail	1.5	\$100,000	\$0	0	0
GIDDINGS	03/10/2000	Hail	1.5	\$100,000	\$0	0	0
GIDDINGS	03/16/2000	Hail	3.5	\$500,000	\$0	0	0
GIDDINGS	05/12/2000	Hail	1	\$0	\$80,000	0	0
LINCOLN	04/16/2001	Hail	1	\$0	\$0	0	0
LEXINGTON	04/16/2001	Hail	1	\$0	\$0	0	0
LEXINGTON	12/23/2002	Hail	1.75	\$0	\$0	0	0
LEXINGTON	12/23/2002	Hail	4.5	\$150,000	\$0	0	0
DIME BOX	04/04/2008	Hail	1	\$0	\$0	0	0
GIDDINGS	04/09/2009	Hail	1	\$0	\$0	0	0
NORTHRUP	05/25/2011	Hail	1	\$0	\$0	0	0
GIDDINGS	05/25/2011	Hail	1.75	\$0	\$0	0	0
GIDDINGS	01/29/2013	Hail	1	\$0	\$0	0	0
DIME BOX	03/19/2013	Hail	1	\$0	\$0	0	0
LEXINGTON	03/19/2013	Hail	1.5	\$0	\$0	0	0
LEXINGTON	03/19/2013	Hail	1.5	\$0	\$0	0	0

TABLE 14-2. HISTORIC HAIL EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (1955-2014)

Location	Date	Event Type	Hail Size	Estimated Damage Cost		Injuries	Deaths
				Property	Crops		
LEXINGTON	03/19/2013	Hail	1.75	\$0	\$0	0	0
LEXINGTON	03/19/2013	Hail	2	\$0	\$0	0	0
GIDDINGS	04/27/2014	Hail	1.25	\$0	\$0	0	0
GIDDINGS	04/27/2014	Hail	2.75	\$0	\$0	0	0
GIDDINGS	04/27/2014	Hail	3	\$0	\$0	0	0

Source: http://www.ncdc.noaa.gov

NM Not measured

Table may list more events than are shown on related figures since some recorded events do not include specific geographic coordinates (GIS-enabled data) for precise graphical representation.

Winds

High winds occur year round in Lee County and participating communities. In the spring and summer, which are generally warm and humid in Texas, high winds often accompany severe thunderstorms. The varying topography in the area has the potential for continuous and sudden high wind gusts. The northern winds are a fairly common wintertime phenomena in Southern Texas. These winds develop in well-defined areas and can be quite strong with resulting drastic drop in air temperatures. Atmospheric conditions are expected to continue unchanged with windstorms remaining a perennial occurrence. Winds of 0 to near 200 mph are possible in the planning area.

Although these high winds may not be life-threatening, they can disrupt daily activities, cause damage to building and structures, and increase the potential damage of other hazards. Wind resource information is shown in Figure 14-9 as a proxy for typical wind speeds. Wind resource information is estimated by the National R enewable E nergy L aboratory (NREL) t o i dentify ar eas that a re s uitable f or w ind e nergy applications. The wind resource is expressed in terms of wind power classes, ranging from Class 1 (lowest) to Class 7 (highest). Each class represents a range of mean wind power density or approximate mean wind speed at specified heights above the ground (in this case, 50 meters above the ground surface). Table 14-3 identifies the mean wind power density and speed associated with each classification. Figure 14-9 shows the wind power class potential density for Lee County and participating communities classified as "Poor." Significant wind events for Lee County and participating communities are highlighted below. They are also listed in Table 14-4. None of these events resulted in injuries or deaths.

Event Descriptions

City of Giddings- The City of Giddings had 15 significant events from 1960 to 2014. Three significant events are described below.

- On September 29, 2005, a thunderstorm produced wind gusts estimated at 58 mph which broke several tree limbs and knocked down some dead trees along FM 2440 west of Giddings. This storm also produced penny size hail.
- On July 19, 2009, a farmer in Ledbetter reported damage to his barn along with trees blown down.

• On September 27, 1966, thunderstorm winds were recorded at 86 mph in the City of Giddings. No injuries or deaths were reported.

City of Lexington – The City of Lexington had 5 significant events from 1960 to 2014. Three significant events are described below.

- On May 14, 2008, Lexington newspaper reported trees down in the City from high winds at over 57 mph.
- On July 23, 2003, Lexington law enforcement reported winds at 69 mph within the city. No injuries or deaths were reported.
- On March 19, 2002, Thunderstorm winds of 65 mph were recorded in Lexington. Not injuries or fatalities were reported.

Lee County (Unicorporated Areas)- The Unincorporated Areas of Lee County had 31 significant events from 1960 to 2014. Three significant events are described below.

- On April 20, 2006, Severe thunderstorms moved into Lee County in the late afternoon. They began producing 86 mph winds as they approached US 77, knocking down trees and power lines from near Lincoln eastward to near Dime Box. The storm also destroyed outbuildings.
- On March 19, 2005, 80 mph thunderstorm winds destroyed severely damaged a large barn northeast of Giddings along FM 141. The winds destroyed the roof of the barn.
- On May 6, 2006, 80 mph winds blew an 18-wheel trailer off a bridge and into a creek along US 77 two miles north of Lexington. Some residents were left without power for few hours.

Wind PowerWind Power Density at S0 meters (W/m²)Wind Speed a S0 meters (mph						
Poor	1	0-200	0-12.5			
Marginal	2	200-300	12.5-14.3			
Fair	3	300-400	14.3-15.7			
Good	4	400-500	15.7-16.8			
Excellent	5	500-600	16.8-17.9			
Outstanding	6	600-800	17.9-19.7			
Superb	7	800-2000	19.7-26.6			

Historical s evere w eather data f rom t he N ational C limatic D ata C enter S torm E vents D atabase lists thunderstorm wind events with wind speeds over 40 knots in Lee County and participating communities between 1955 a nd D ecember 2014, a s shown in Table 14-4. This table was supplemented with local knowledge and news articles of events effecting the participating communities.

The N ational Climatic Data Center database lists no d ust devil or dust storm events for the for the participating c ommunities. There were s everal doc umented t ornadoes in L ee County and participating communities in the 1950 to 2014 time period. These tornadoes are discussed in Chapter 15. Events listed as 'Lee County' in Table 14-4 affected large portions of the HMP update area. Large systems may have affected additional jurisdictions.

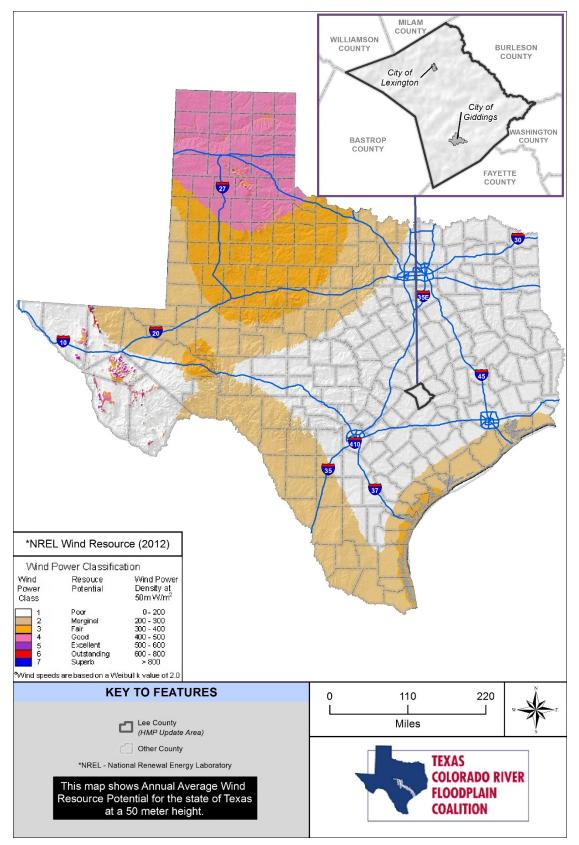


Figure 14-9. Texas Wind Power

Location	Date	Peak Wind	Estimated Da	image Cost	Injunios	Deaths
Location	Date	Speed (knots)	Property	Crops	- Injuries	Deaths
Lee County	04/29/1963	72	\$0	\$0	0	0
Lee County	09/27/1966	86	\$0	\$0	0	0
Lee County	06/21/1982	52	\$0	\$0	0	0
Lexington	03/19/2002	57	\$0	\$0	0	0
Giddings	06/13/2003	55	\$10,000	\$0	0	0
Lexington	07/23/2003	60	\$50,000	\$0	0	0
Lexington	08/11/2003	60	\$20,000	\$0	0	0
Dime Box	08/11/2004	60	\$0	\$0	0	0
Giddings	03/19/2005	70	\$200,000	\$0	0	0
Giddings	07/07/2005	60	\$0	\$0	0	0
Lincoln	04/20/2006	75	\$200,000	\$0	0	0
Lexington	05/06/2006	70	\$100,000	\$0	0	0
Lexington	05/14/2008	50	\$5,000	\$0	0	0
Dime Box	05/12/2011	50	\$0	\$0	0	0
Northrup	05/12/2011	60	\$5,000	\$0	0	0
Giddings	06/05/2011	52	\$2,000	\$0	0	0
iddings Lee County Airport	09/29/2011	50	\$0	\$0	0	0
Northrup	01/25/2012	50	\$40,000	\$0	0	0
Northrup	06/12/2012	50	\$0	\$0	0	0
Loebau	08/31/2012	50	\$10,000	\$0	0	0

Source: http://www.ncdc.noaa.gov

NM Not measured

Table may list more events than are shown on related figures since some recorded events do not include specific geographic (GIS- enabled data) coordinates for precise graphical representation.

14.2.2 Location

Severe weather events have the potential to happen anywhere in the planning area. Figure 6-6 shows the distribution of average precipitation over the planning area.

Lightning

The entire extent of Lee County and participating communities are exposed to some degree of lightning hazard, though exposed points of high elevation have significantly higher frequency of occurrence. Since lightning can occur at any location, all of the communities could experience lightning events throughout their respective jurisdictions. There were no recorded lightning event resulting in property damage, injuries,

or death recorded by the NOAA National Climatic Data Center from 1993 to 2014 in the HMP update area. There were no new lightning-related data from local sources for the 1993 to 2014 time period.

Hail

The entire extent of L ee County and participating c ommunities are exposed t ot he hailstorm ha zard. Previous instances of hail events in the county are shown in Figure 14-10. Figure 14-10 does not show all hail events shown on Table 14-2 because not all tabular data had geographic locations. Only events listed with GIS data were mapped. Non-GIS supported events were included in the table to provide more data for participating communities.

Winds

The entire extent of Lee County and participating communities are exposed to high winds. They have the ability to cause damage over 100 miles from the center of storm activity. Wind events are most damaging to areas that are heavily wooded. Winds impacting walls, doors, windows, and roofs, may cause structural components to fail. Previous occurrences of damaging high winds and their respective locations are shown in Figure 14-11. Figure 14-11 does not show all wind events on Table 14-4 because not all tabular data had geographic coordinates. Only events listed with GIS data were mapped. Non-GIS supported events were included in the table to provide more data for participating communities.

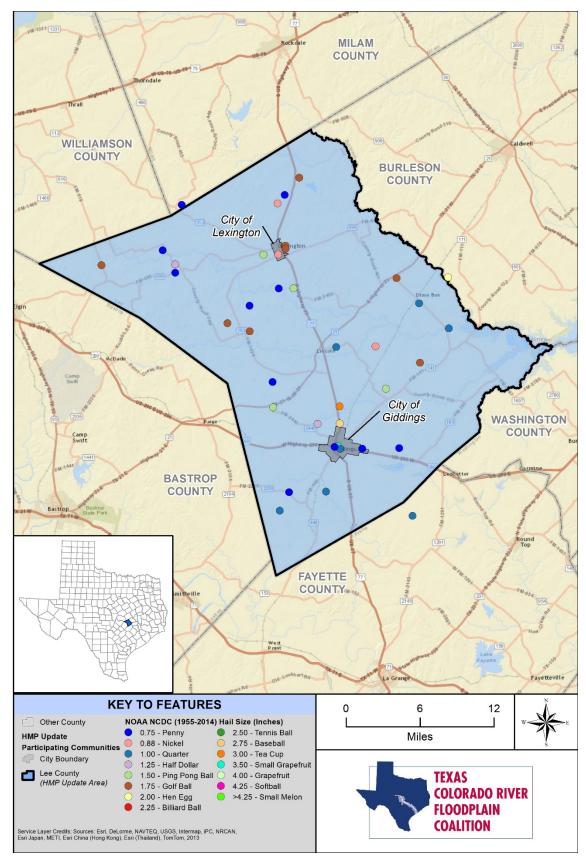


Figure 14-10. Hail Events in Lee County (1955-2014)

Figure 14-11. Damaging Wind Events in Lee County (1955-2014)

14.2.3 Frequency

Lightning

To date, there have not been any reported lightning strikes resulting in property damage in Lee County. However, T exas r anks a s one of the highest in lightning fatalities in the nation. Lee C ounty and all participating communities have approximately 12 to 15 lightning flashes per square mile per year and a thunderstorm lightning event is considered likely, with a r ecurrence interval of 10 years or more. This frequency statistics applies to all Lee County and participating communities.

Hail

Based on a record of 37 hailstorm events over a 54-year period, significant hail occurs approximately 1.5 times p er y ear on average and i s considered highly likely. S ince h ail events can h appen anywhere throughout the HMP update area, each participating community has the same frequency and probability for future events (1.5 times per year on average). The City of Giddings can expect future events with hail up to 3.5" in diameter. The Town of Lexington can expect future events with hail up to 4.5" in diameter. Lee County can expect future events with hail up to 2.75" in diameter. All participating communities can expect 1.5 events per year in the future.

Winds

Based on 20 events in 64 years, a damaging high-wind event occurs approximately 2 to 3 years on average in Lee C ounty and participating c ommunities and is c onsidered likely. Since wind events can happen anywhere throughout the HMP update area, each participating community has the same frequency and probability for future events (approximately two to three times per year on average).

14.2.4 Severity

Thunderstorms and Lightning

Based on the information in this hazard profile, the risk of a damaging lightning event in Lee County and participating communities is likely. The number of reported injuries from lightning is likely to be low, and county infrastructure losses are expected to be limited each year.

Hail

Severe hailstorms can be quite destructive. In recent years within the United States, hail caused more than \$1.3 billion in damage to property and crops each year representing between 1 and 2% of the annual crop value. Insurance claims resulting from hailstorm damage increased 84% nationwide in 2012 from their 2010 level according to the National Insurance Crime Bureau. In 2010, there were 467,602 hail damage claims filed in the U.S. That number increased to 689,267 in 2011 and 861,597 in 2012. The property damage can be as minimal as a few broken shingles to the total destruction of buildings.

Over 2 million hail damage claims were processed from January 1, 2010, to December 31, 2012, with Texas ranking first in overall claims. The top five states generating hail damage claims were Texas (320,823 claims); Missouri (138,857 claims); Kansas (126,490 claims); Colorado (118,118 claims) and Oklahoma (114,168 claims). Much of the damage inflicted by hail is to crops. Even relatively small hail can shred plants to ribbons in a matter of minutes. Vehicles, roofs of buildings and homes, and landscaping are the other things m ost c ommonly da maged by ha il. H ail ha s be en k nown t o c ause i njury t o hum ans and occasionally has been fatal.

A typical hail event occurred on March 10, 2000. Large, very dense hail, propelled by winds estimated at 30 to 40 mph, caused widespread damage to the area from Giddings to Dime Box. Approximately \$100,000 in damages was reported.

Based on the information in this hazard profile, the severity of hail storms is limited: 10 to 25% of property severely damaged; shutdown of facilities for more than a week; or injuries/illnesses that are treatable and do not result in permanent disability. The overall significance is considered medium: moderate potential impact.

High Winds

High winds, often accompanying severe thunderstorms, can cause significant property and crop damage, threaten public safety, and have adverse economic impacts from business closures and power loss. Wind storms in L ee C ounty a nd participating c ommunities a re r arely l ife threatening, but do di srupt da ily activities, cause damage to buildings, and structures, and increase the potential for other hazards, such as wildfires. Winter winds can result in damage and close highways due to ice and blowing snow. Winds can also cause trees to fall, particularly those killed by insects or wildfire, creating a hazard to property or those outdoors.

Based on the information in this hazard profile, the magnitude/severity of high winds is considered limited. The overall significance of the hazard is considered low, with minimal potential impact: 10 to 25% of property severely da maged; shutdown of facilities for more than a week; or injuries/illnesses that are treatable and do not result in permanent disability.

14.2.5 Warning Time

Meteorologists can often predict the likelihood of a severe storm. This can give several days of warning time. However, meteorologists cannot predict the exact time of onset or severity of the storm. Some storms may come on more quickly and have only a few hours of warning time. Weather forecasts for the planning area are reliable. However, at times, the warning for the onset of severe weather may be limited.

14.3 SECONDARY HAZARDS

The most significant secondary hazards associated with severe local storms are floods, falling and downed trees, landslides, and downed power lines. Rapidly melting snow combined with heavy rain can overwhelm both natural and man-made drainage systems, causing overflow and property destruction. Erosion can occur when the soil on slopes becomes oversaturated and fails. Fires can occur as a result of lightning strikes. Many locations in the region have minimal vegetative ground cover and the high winds can create a large dust storm, which becomes a hazard for travelers and a disruption for local services. High winds in the winter can turn small amount of snow into a complete whiteout and create drifts in roadways. Debris carried by high winds can also result in injury or damage to property. A wildland fire can be accelerated and rendered unpredictable by high winds, which creates a dangerous environment for firefighters.

14.4 CLIMATE CHANGE IMPACTS

Climate change presents a significant challenge for risk management associated with severe weather. The frequency of severe weather events has increased steadily over the last century. The number of weather-related disasters during the 1990s was four times that of the 1950s, and cost 14 times as much in economic losses. Historical data shows that the probability for severe weather events increases in a warmer climate (see Figure 14-12). The changing hydrograph caused by climate change could have a significant impact on the intensity, duration, and frequency of storm events. All of these impacts could have significant economic consequences.

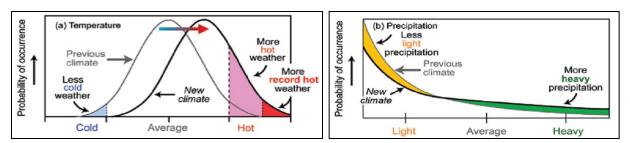


Figure 14-12. Severe Weather Probabilities in Warmer Climates

14.5 EXPOSURE

The primary data source was the HAZUS 2.2 inventory data (updated with 2010 Census Data and 2014 RS Means Square Foot Costs), augmented with state and federal data sets, NOAA National Climatic Data Center Storm Event Database, as well as data from local sources.

14.5.1 Population

It can be assumed that the entire planning area is exposed to some extent to thunderstorm, lightning, high wind, and hail events. Certain areas are more exposed due to geographic location and local weather patterns. Populations with large stands of trees or overhead power lines may be more susceptible to wind damage and black out, while populations in low-lying areas are at risk for possible flooding. It is not uncommon for residents living in more remote areas of the county to be isolated after such events. Table 14-6 lists the vulnerable population for the participating communities.

14.5.2 Property

According to the HAZUS 2.2 inventory data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs), there are 7,161 buildings in the HMP update area (residential, commercial, and other) with an asset replaceable value of \$1.6 billion (excluding contents).

The vast majority of these buildings are within the participating communities and the unincorporated area. About 98% of these buildings (and 82% of the building value) are associated with residential housing.

Other types of buildings in this report include a gricultural, e ducational, religious, and g overnmental structures.

It is estimated that most of the residential structures were built without the influence of a structure building code with provisions for wind loads. Wind pressure can create a direct and frontal assault on a structure, pushing walls, doors, and windows inward. Conversely, passing currents can create lift and suction forces that act to pull building components and surfaces outward. The effects of winds are magnified in the upper levels of multi-story structures. As positive and negative forces impact the building's protective envelope (doors, w indows, a nd w alls), the r esult c an be r oof or building component failures and considerable structural damage.

All of these buildings are considered to be exposed to the thunderstorm, lightning, wind, and hail hazards, but structures in poor condition or in particularly vulnerable locations (located on hilltops or exposed open areas) may risk the most damage. The frequency and degree of damage will depend on specific locations.

TABLE 14-5 EXPOSED STRUCTURES AND POPULATION						
Jurisdiction	Residential	Commercial	Other *	Total Structures	Total Population	
City of Giddings	1,590	62	22	1,674	1,473	
City of Lexington	524	8	1	533	336	
Unincorporated Area	4,921	16	17	4,954	2,536	
Planning Area Total	7,035	86	40	7,161	4,345	

14.5.3 Critical Facilities and Infrastructure

All critical facilities within the planning area are exposed to lightning, high winds, and hail. Those facilities within the floodplain (Chapter 12) are exposed to flooding a ssociated with thunderstorms. A dditional facilities on higher ground may be particularly exposed to wind damage, lightning, or damage from falling trees. The most common problems associated with these weather events are loss of utilities. Downed power lines can cause blackouts, leaving large areas isolated. Phone, water, and sewer systems may not function. Roads may become impassable due to secondary hazards such as flooding.

14.5.4 Environment

The environment is highly exposed to lightning, high winds, and hail. Natural habitats such as streams and trees risk major damage and d estruction. Prolonged rains c an s aturate soils and l ead to s lope f ailure. Flooding e vents c an pr oduce r iver c hannel m igration or da mage r iparian ha bitat. L ightning c an s tart wildfires, particularly during a drought.

14.6 VULNERABILITY

Because lightning, hail, and wind cannot be directly modeled in HAZUS, annualized losses were estimated using G IS-based an alysis, h istorical d ata a nalysis, and st atistical risk ass essment m ethodology. E vent frequency, severity indicators, expert opinions, and historical local knowledge of the region were used for this assessment.

14.6.1 Population

Vulnerable populations are the elderly, low income or linguistically isolated populations, people with lifethreatening illnesses, and residents living in areas that are isolated from major roads. Power outages can be life threatening to those dependent on electricity for life support. Isolation of these populations is a significant concern. These populations face isolation and exposure during thunderstorm, wind, and hail events and could suffer more secondary effects of the hazard. Outdoor recreational users in the area may also be m ore v ulnerable t o s evere w eather events. Table 1 4-6 shows v ulnerable populations per participating jurisdiction.

TABLE 14-6. VULNERABLE POPULATION							
Youth JurisdictionYouth Population (<16)							
City of Giddings	1,473	30.18	706	14.46	366	7.50	
Town of Lexington	336	28.55	167	14.19	74	6.29	
Lee County Unincorporated Area	2,536	24.03	1,749	16.57	641	6.07	
Lee County Total	4,345	26.16	2,622	15.78	1,081	6.51	

14.6.2 Property

All property is vulnerable during thunderstorm, lightning, wind, and hail events, but properties in poor condition or in particularly vulnerable locations may risk the most damage. Generally, damage is minimal and goes unreported. Those on hillsides and ridges may be more prone to wind damage. Those that are located under or near overhead lines or near large trees may be damaged in the event of a collapse.

Loss estimations for the lightning, wind, and hail hazards are not based on damage functions, because no such damage functions have been generated. Instead, loss estimates were developed representing projected damages (annualized loss) on reported damages and exposed values. Historical events, statistical analysis and probability factors were applied to the county's and communities reported damages and exposed values to create an annualized loss. Table 14-7 through Table 14-9 lists the property loss estimates for lightning, hail, and wind events. Annualized losses of 'negligible' are less than \$50 annually. Negligible loss hazards are still included despite minimal annualized losses because of the potential for a h igh value damaging event.

TABLE 14-7. LOSS ESTIMATES FOR HAIL EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES						
Jurisdiction Exposed Value Annualized Loss Percentage						
City of Giddings	\$871,346,709	\$1,368	<0.01			
City of Lexington	\$177,669,507	\$67	<0.01			
Unincorporated Area	\$1,645,914,085	\$315,607	0.02			
Planning Area Total	\$2,694,930,301	\$317,042	<0.01			

TABLE 14-8. LOSS ESTIMATES FOR LIGHTNING EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES						
Jurisdiction Exposed Value Annualized Loss Annualized Loss Percentage						
City of Giddings	\$871,346,709	Negligible	<0.01			
City of Lexington	\$177,669,507	Negligible	<0.01			
Unincorporated Area	\$1,645,914,085	Negligible	<0.01			
Planning Area Total	\$2,694,930,301	Negligible	<0.01			

TABLE 14-9. LOSS ESTIMATES FOR WIND EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES						
Jurisdiction	Exposed Value	Annualized Loss	Annualized Loss Percentage			
City of Giddings	\$871,346,709	\$1,021	<0.01			
City of Lexington	\$177,669,507	\$60	<0.01			
Unincorporated Area	\$1,645,914,085	\$235,604	0.01			
Planning Area Total	\$2,694,930,301	\$236,685	<0.01			

Vulnerability Narrative

All participating communities are equally at risk to either lightning, hail, or wind. Table 14-6 lists the vulnerable population per community. Table 14-7 to Table 14-9 lists the estimated annualized losses in dollars for each participating community. All participating communities are vulnerable to communication problems. This applies to both residents of the communities, such as Early Warning Systems, and between emergency personal. Resources such as the implementation of Emergency Notification Systems and NOAA "All Hazard" Radios would decrease the vulnerability of each jurisdiction.

City of Giddings -

- Lightning Critical facilities such as p olice and fire stations or medical facilities are more vulnerable t o b eing d isrupted b y a lightning event as this could increase response times to residents. These facilities are located near the city center and along US 77 north of US 290. Residents without access to an emergency notification system for severe weather are at a higher risk as well. Properties with thick vegetation and large trees are more susceptible to an event.
- *Hail* The maximum hail size recorded for the City is 3.5 inches (small grapefruit size hail) and can cause damages to aircraft bodywork, create serious endangerment to humans and animals, pit paving stones, and severely damage forests. Mobile homes and older residential areas are more

prone to damages from an event. Events occur more often in the spring. Events occur throughout the city and county. No specific clustering of events is noticeable.

• *Wind* – Based on historical events, significant wind events have been recorded at over 75 mph. Older residential areas as well as manufactured home subdivisions, houses, and structures not securely anchored to foundations are most vulnerable to wind damages. Furthermore, areas with dead trees and vegetation that are not regularly cleared are more prone to wind damages. Both of these (loose structures and dead vegetation) can become flying/falling hazards in a wind event. The most significant event was recorded on the eastern side of the City. Approximately less than 20% of the city's housing are manufactured homes. Damaging events cluster around the central part of the city and just outside city limits.

Community Perception of Vulnerability in the City of Giddings

See front page of current chapter for a summary of hazard rankings for the City of Giddings. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

Town of Lexington -

- *Lightning* Properties with large trees or thick brush are more vulnerable to a damaging lightning event. R esidents n ot aware or u nable to a fford p reventive actions or correct responses to a lightning event are more vulnerable. These facilities are located near the city center.
- *Hail* The maximum hail size recorded for Lexington was 4.5 inches (softball size hail). This hail size can cause fatal injury to humans and animals and damage the fabric of buildings. Older homes may experience more damages as they have been exposed to the elements longer. Events occur more often in the spring. Events occur throughout the city and county. No specific clustering of events is noticeable.
- Wind Based on historical events, the most significant wind events recorded for the Town of Lexington were at 70 knots or 80.5 mph. Older residential areas as well as manufactured home subdivisions, houses, and structures not securely anchored to foundations are most vulnerable to wind damages. Furthermore, areas with dead trees and vegetation that are not regularly cleared are more prone to wind damages. Both of these (loose structures and dead vegetation) can become flying/falling hazards in a wind event. If a critical facility, such as police or fire stations or medical facilities, were to be impacted by an event this could increase response times to residents and increase v ulnerability. A pproximately less than 24% of the city's housing are manufactured homes. Damaging events cluster around the northern part of the city.

Community Perception of Vulnerability in the Town of Lexington

See front page of current chapter for a summary of hazard rankings for the Town of Lexington. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

Lee County (Unincorporated Area) -

• Lightning – Residents unaware of how to prepare, what actions to take, or how to respond to a lightning st orm are more at risk. P roperties with thick vegetation and large trees are more

susceptible to an event. Those unable to afford preventative actions are more vulnerable as well. Rural areas that are a greater distance from emergency services, thus increasing response time in the event of a fire or other damages caused by lightning.

- *Hail* The maximum hail size recorded for the Unincorporated Areas of Lee County was 2.75 inches (tennis ball sized hail). This hail size can cause significant structural damage and poses a risk of serious injury to humans and animals. Older homes may experience more damages as they have b een ex posed t o t he el ements. E vents oc cur more of ten in t he s pring. E vents oc cur throughout the city and county. No specific clustering of events is noticeable.
- Wind Based on historical e vents, the m ost s ignificant w ind e vents r ecorded f or the Unincorporated Areas of Lee County were at 86 knots or 99 mph. Lee rural areas may experience longer emergency response times if an event were to occur due to their distance from services. Residents unaware of precautions to take before an event occurs (such as clearing dead trees, branches, and securing non-permanent structures) are more vulnerable to experience damages or injury. Older residential areas as well as manufactured home subdivisions, houses, and structures not securely anchored to foundations are most vulnerable to wind damages. Furthermore, areas with dead trees and vegetation that are not regularly cleared are more prone to wind damages. Both of these (loose structures and dead vegetation) can become flying/falling hazards in a wind event. Rural properties are likely further from emergency services and can expect longer response times. Approximately less than 26% of the area's housing are manufactured homes.

Community Perception of Vulnerability in Lee County Unincorporated Areas

See front page of current chapter for a summary of hazard rankings for Lee County Unincorporated Area. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

14.6.3 Critical Facilities and Infrastructure

Incapacity and loss of roads are the primary transportation failures resulting from lightning, wind, and hail and are mostly associated with secondary hazards. Erosion caused by heavy prolonged rains can block roads. High winds can cause significant damage to trees and power lines, blocking roads with debris, incapacitating transportation, isolating population, and disrupting ingress and egress. Of particular concern are roads providing access to isolated areas and to the elderly. Prolonged obstruction of major routes due to debris or floodwaters can disrupt the shipment of goods and other commerce. Large, prolonged storms can have negative economic impacts for an entire region. Severe windstorms and downed trees can create serious impacts on power and above-ground communication lines. Loss of electricity and phone connection would leave certain populations isolated because residents would be unable to call for assistance. Lightning events in the participating communities can have destructive effects on power and information systems. Failure of these systems would have cascading effects throughout the county and could possible disrupt critical facility functions.

14.6.4 Environment

The vulnerability of the environment to severe weather is the same as the exposure, discussed in Section 14.5.4

14.7 FUTURE TRENDS IN DEVELOPMENT

All future development will be affected by severe storms. The ability to withstand impacts lies in sound land use practices and consistent enforcement of codes and regulations for new construction. The planning partners have already adopted the International Building Code for construction within this region. This code is equipped to deal with the impacts of severe weather events. Land use policies identified in master plans and enforced through zoning code and the permitting process also address many of the secondary impacts

of the severe weather hazard. With these tools, the planning partnership is well equipped to deal with future growth and the associated impacts of severe weather.

14.8 SCENARIO

Although sev ere l ocal st orms are i nfrequent, i mpacts can be si gnificant, p articularly when secondary hazards of flood and erosion occur. A worst-case event would involve prolonged high winds an intense hail event, and a l ightning st rike at a c ritical f acility (such as an em ergency se rvice station)during a thunderstorm. Such an event would have both short-term and longer-term effects. Initially, schools and roads would be closed due to power outages caused by high winds and downed tree obstructions. In more rural areas, some subdivisions could experience limited ingress and egress. Prolonged rain could produce flooding, overtopped culverts with ponded water on roads and landslides on steep slopes. Flooding could further obstruct roads and bridges, further isolating residents.

14.9 ISSUES

Important issues associated with a severe weather in the planning area include the following:

- Older building stock in the planning area is built to low code standards or none at all. These structures could be highly vulnerable to severe weather events such as windstorms.
- Redundancy of power supply must be evaluated.
- The capacity for backup power generation is limited.
- The potential for isolation after a severe storm event is high.
- There is limited information available for local weather forecasts.

The lack of proper management of trees may exacerbate damage from high winds.

CHAPTER 15. TORNADO

TORNADO RANKING				
Lee County	Medium			
City of Giddings	Medium			
City of Lexington	Medium			

15.1 GENERAL BACKGROUND

DEFINITIONS

Tornado — Funnel clouds that generate winds up to 500 mph. They can affect an area up to threequarters of a mile wide, with a path of varying length. Tornadoes can come from lines of cumulonimbus clouds or from a single storm cloud. They are measured using the Fujita Scale (ranging from F0 to F5), or the Enhanced Fujita Scale.

A tornado is a narrow, violently rotating column of air

that extends from the base of a cumulonimbus cloud to the ground. The visible sign of a tornado is the dust and debris that is caught in the rotating column made up of water droplets. Tornadoes are the most violent of all atmospheric storms. Tornadoes can be induced by hurricanes. The following are common ingredients for tornado formation:

- Very strong winds in the mid and upper levels of the atmosphere
- Clockwise turning of the wind with height (i.e., from southeast at the surface to west aloft)
- Increasing wind speed in the lowest 10,000 feet of the atmosphere (i.e., 20 mph at the surface and 50 mph at 7,000 feet)
- Very warm, moist air near the ground with unusually cooler air aloft
- A forcing mechanism such as a cold front or leftover weather boundary from previous shower or thunderstorm activity

Tornadoes can form from individual cells within severe thunderstorm squall lines. They also can form from an isolated super-cell thunderstorm. Weak tornadoes can sometimes occur from air that is converging and spinning upward, with little more than a rain shower occurring in the vicinity.

In 2007, NWS began rating tornadoes using the Enhanced Fujita Scale (EF-scale). The EF-scale is a set of wind estimates (not measurements) based on damage. It uses 3 -second gusts estimated at the point of damage based on a judgment of 8 levels of damage to the 28 indicators listed in Table 15-1. These estimates vary with height and exposure. Standard measurements are taken by weather stations in openly exposed area. Table 15-2 describes the EF-scale ratings (NOAA 2007).

The U.S. experiences m ore tornadoes than a ny ot her c ountry. In a typical y ear, approximately 1,000 tornadoes a ffect t he U.S. T he p eak of t he tornado s eason is A pril t hrough June, w ith t he h ighest concentration of tornadoes in the central U.S. Figure 15-1 shows the annual average number of tornadoes between 1991 and 2010. Texas experienced an average of 155 tornado events annually in that period. Texas ranks first among the 50 states in both the frequency of tornadoes and the number of lethal tornadoes. When these statistics are compared to other states by the frequency per 10,000 square miles, Texas ranks tenth in the U.S. "Tornado Alley" is a nickname given to an area in the southern plains of the central United States that consistently experiences a high frequency of tornadoes each year. Tornadoes in this region typically happen in late spring and occasionally the early fall. The Gulf Coast area has a separate tornado region nicknamed "Dixie Alley" with a relatively high frequency of tornadoes occurring in the late fall (October through December).

NOAA's National Severe Storms Laboratory used historical data to estimate the daily probability of tornado occurrences across the U.S., regardless of tornado magnitude. Figure 15-2 shows the estimates. The density per 25 square miles in the map's legend indicates the probable number of tornadoes for each 25 square mile

	TABLE 15-1. ENHANCED FUJITA SCALE DAMAGE INDICATORS					
No.	Damage Indicator	No.	Damage Indicator			
1	Small barns, farm outbuildings	15	School – one-story elementary (interior or exterior halls)			
2	One or two-family residences	16	School – junior or senior high school			
3	Single-wide mobile home	17	Low-rise (1-4 story) building			
4	Double-wide mobile home	18	Mid-rise (5-20) building			
5	Apartment, condo, townhouse (3 stories or less)	19	High-rise (over 20 stories) building			
6	Motel	20	Institutional building (hospital, government, or university)			
7	Masonry apartment or motel	21	Metal building system			
8	Small retail building (fast food)	22	Service station canopy			
9	Small professional (doctor office, bank)	23	Warehouse (tilt-up walls or heavy timber)			
10	Strip mall	24	Transmission line tower			
11	Large shopping mall	25	Free-standing tower			
12	Large, isolated (big box) retail building	26	Free standing pole (light, flag, luminary)			
13	Automobile showroom	27	Tree – hardwood			
14	Automobile service building	28	Tree – softwood			

cell within the contoured zone that can be expected over a similar period of record. This density number does NOT indicate the number of events that can be expected across the entire zone on the map.

TABLE 15-2. THE FUJITA SCALE AND ENHANCED FUJITA SCALE								
Fujita (F) Scale		De	rived	Operational Enhanced Fujita (EF) Scale				
F Number	Fastest ¼ mile (mph)	3-second gust (mph)	EF Number	3-second gust (mph)	EF Number	3-second gusts (mph)		
0	40-72	45-78	0	65-85	0	65-85		
1	73-112	79-117	1	86-109	1	86-110		
2	113-157	118-161	2	110-137	2	111-135		
3	158-207	162-209	3	138-167	3	136-165		
4	208-260	210-261	4	168-199	4	166-200		
5	261-318	262-317	5	200-234	5	Over 200		

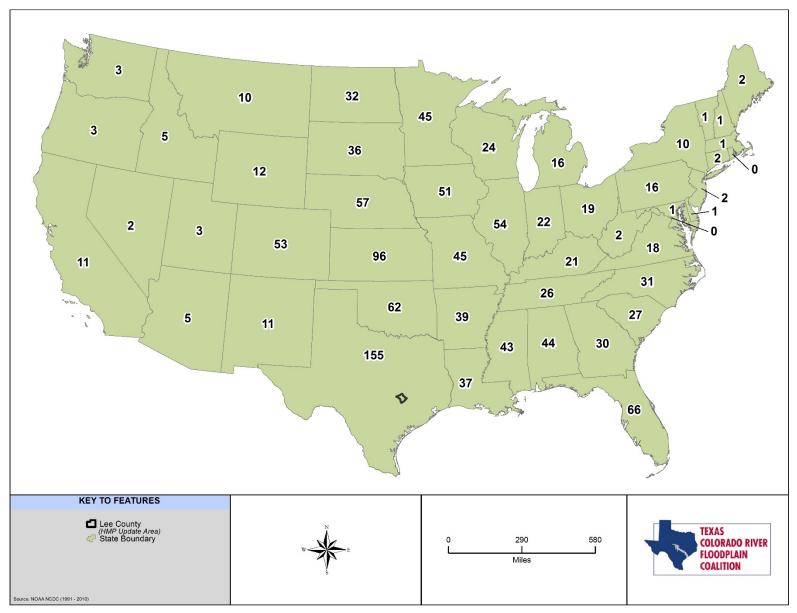


Figure 15-1. Annual Average Number of Tornadoes in the U.S. (1991-2010)

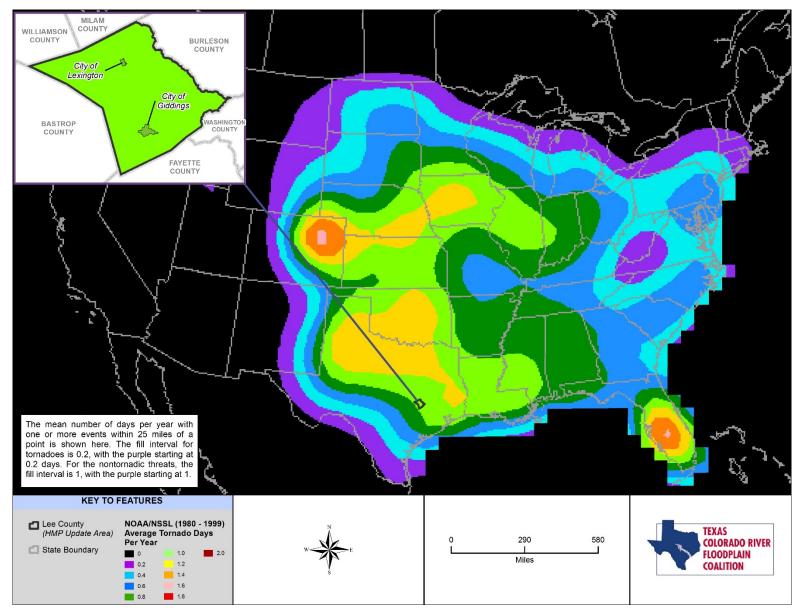


Figure 15-2. Total Annual Threat of Tornado Events in the U.S. (1980-1999)

15.2 HAZARD PROFILE

15.2.1 Past Events

Г

Table 15-3 lists tornadoes in Lee County and the participating communities recorded by the NOAA Storm Events Center from 1950 to 2014. Most of the tornadoes caused property damages with a sizeable number rated as F1 tornadoes. Figure 15-3 shows the location of NOAA documented tornado paths between 1950 and 2014. As can be seen from the map, most of the tornadoes occur in the spring season, with a few in the fall.

TABLE 15-3. HISTORIC TORNADO EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (1950-2014)							
			Estimated Dam	age Cost			
Location	Date	Category	Property	Crops	Injuries	Deaths	
Lee County	12/2/1953	F3	\$25,000	\$0	4	0	
Lee County	4/30/1954	F2	\$250,000	\$0	2	0	
Lee County	3/20/1957	F3	\$25,000	\$0	2	0	
Lee County	3/20/1957	F3	\$25,000	\$0	2	0	
Lee County	4/27/1958	F0	\$2,500	\$0	0	0	
Lee County	4/8/1961	F1	\$250	\$0	0	0	
Lee County	2/15/1962	F1	\$25,000	\$0	0	0	
Lee County	2/23/1962	F2	\$25,000	\$0	0	0	
Lee County	2/21/1971	F1	\$250	\$0	0	0	
Lee County	8/12/1971	F1	\$2,500	\$0	0	0	
Lee County	8/3/1972	F1	\$25,000	\$0	0	0	
Lee County	3/10/1973	F1	\$250	\$0	0	0	
Lee County	4/7/1980	F3	\$250,000	\$0	0	0	
Lee County	5/21/1983	F1	\$250,000	\$0	1	0	
Lee County	11/15/1987	F2	\$2,500,000	\$0	8	0	
Lee County	1/14/1991	F1	\$25,000	\$0	0	0	
Lexington	9/1/1994	F0	\$1,000	\$0	0	0	
Blue	11/5/1994	F2	\$10,000	\$0	0	0	
North Lexington	1/12/1995	F0	\$0	\$0	0	0	
Giddings	1/11/1998	F1	\$80,000	\$20,000	0	0	
Giddings	1/11/1998	F1	\$50,000	\$0	0	0	
Dime Box	1/21/1998	F0	\$0	\$0	0	0	

TABLE 15-3. HISTORIC TORNADO EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (1950-2014)							
			Estimated Dat	nage Cost			
Location	Date	Category	Property	Crops	Injuries	Deaths	
Lexington	1/21/1998	F0	\$0	\$0	0	0	
Lexington	1/21/1998	F0	\$0	\$0	0	0	
Dime Box	1/21/1998	F1	\$80,000	\$10,000	0	0	
Lexington	1/21/1998	N/A	\$0	\$0	0	0	
Blue	11/11/2008	N/A	\$0	\$0	0	0	
Lexington	10/13/2012	EF0	\$5,000	\$0	0	0	
http://www.ncdc.noaa.	gov						

Table may list more events than are shown on related figures since some recorded events do not include specific geographic coordinates (GIS-enabled data) for precise graphical representation.

15.2.2 Location

Recorded t ornadoes in the p lanning area are typically average size and short-lived. They c an oc cur anywhere in the county and participating communities. Figure 15-4 shows tornado activity documented by NOAA from 1980-1999. Figure 15-5 the location of previous tornado events in Lee County and participating communities.

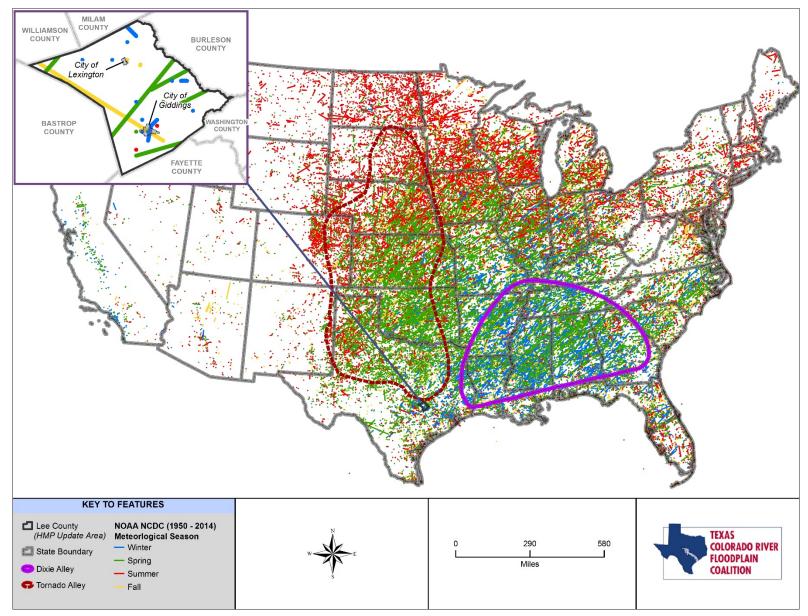


Figure 15-3. Tornado Paths in the U.S. (1950-2014)

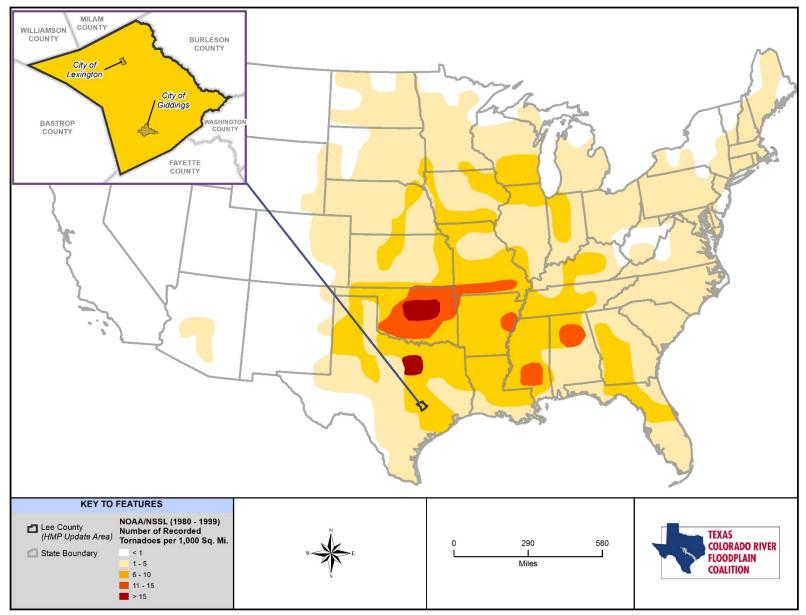


Figure 15-4. Tornado Activity in the U.S. (1950-2014)

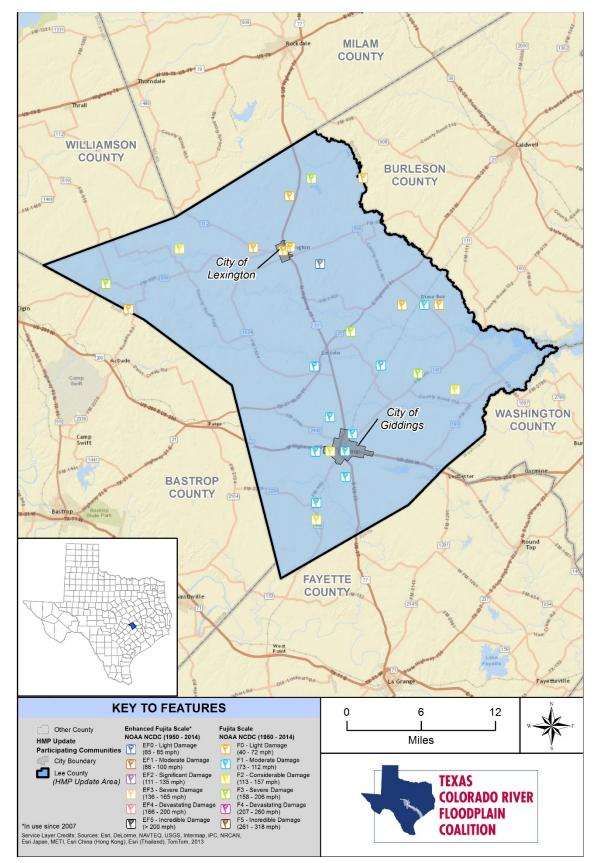


Figure 15-5. Tornado Events in Lee County (1950-2014)

15.2.3 Frequency

Tornadoes may occur in any month and at any hour of the day, but they occur with the greatest frequency during the late spring and early summer months, and between the hours of 4:00 pm and 8:00 pm. In the period of 1951 to 2011, nearly 62.7% of all Texas tornadoes occurred within the three-month period of April, May, and June, with almost one-third of the total tornadoes occurring in May.

Table 15-3 lists 19 recorded tornadoes rated F1 or higher between 1950 and 2014. Therefore, on average, a significant tornado occurs in the county once every 2 to 3 years for each participating community (as tornado events are random, and can occur anywhere). Since tornado events can occur anywhere throughout the HMP update area, each participating community has the same frequency and probability of future events (once every 2 to 3 years). Events as strong as a F3 tornado can expected for each participating communities (see Table 15-3) in the future.

15.2.4 Severity

Tornadoes are potentially the most dangerous of local storms. If a major tornado were to strike within the populated areas of Lee County and the participating communities, damage could be widespread. Businesses could be forced to close for an extended period or permanently, fatalities could be high, many people could be homeless for an extended period, and routine services such as telephone or power could be disrupted. Buildings may be damaged or destroyed. Historically, tornadoes have not typically been severe or caused damage in the planning area.

15.2.5 Warning Time

The NOAA Storm Prediction Center issues tornado watches and warnings for Lee County. Watches and warnings are described below:

- Tornado Watch Tornadoes are possible. Remain alert for approaching storms. Watch the sky and stay tuned to NOAA weather radio, commercial radio, or television for information.
- Tornado W arning A t ornado has been s ighted or indicated by w eather r adar. T ake sh elter immediately.

Once a warning has been issued, residents may have only a matter of seconds or minutes to seek shelter.

15.3 SECONDARY HAZARDS

Tornadoes may cause loss of power if utility service is disrupted. A dditionally, fires may result from damages to natural gas infrastructure. Hazardous materials may be released if a structure is damaged that houses such materials or if such a material is in transport.

15.4 CLIMATE CHANGE IMPACTS

Climate change impacts on the frequency and severity of tornadoes are unclear. According to the Center for Climate Change and Energy Solutions, "Researchers are working to better understand how the building blocks for tornadoes – atmospheric instability and wind shear – will respond to global warming. It is likely that a warmer, moister world would allow for more frequent instability. However, it is also likely that a warmer world would lessen chances for wind shear. Recent trends for these quantities in the Midwest during the spring are inconclusive. It is also possible that these changes could shift the timing of tornadoes or regions that are most likely to be hit" (Center for Climate and Energy Solutions no date).

15.5 EXPOSURE

Because tornadoes cannot be directly modeled in HAZUS, annualized losses were estimated using GISbased analysis, historical data analysis, and statistical risk as sessment methodology. E vent frequency, severity indicators, expert opinions, and historical knowledge of the region were used for this assessment. The primary data source was the updated HAZUS inventory data (updated with 2010 U.S. Census data and 2014 RS Means S quare F oot C osts) augmented with state and federal data sets as well as the NOAA National Climatic Data Center Storm Event Database.

15.5.1 Population

It can be assumed that the entire planning area is exposed to tornadoes to some extent. Certain areas are more exposed due to geographic location (rural areas of the county) and local weather patterns.

15.5.2 Property

According to the HAZUS 2.2 inventory data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs), there are 7,161 buildings in the HMP update area (residential, commercial, and other) with an asset replaceable value of \$1.6 billion (excluding contents). The vast majority of these buildings are within the participating communities and the unincorporated area. About 98% of these buildings (and 82% of the building value) are associated with residential housing. Other types of buildings in this report include a gricultural, e ducational, r eligious, a nd g overnmental st ructures. S ee h azard l oss t ables f or community-specific total assessed numbers (e.g. Table 15-6). Properties at lower elevations are more likely to be exposed to tornadoes. Table 15-4 list the exposed structures and population for each participating community.

TABLE 15-4 EXPOSED STRUCTURES AND POPULATION					
Jurisdiction	Residential	Commercial	Other *	Total Structures	Total Population
City of Giddings	1,590	62	22	1,674	1,473
City of Lexington	524	8	1	533	336
Unincorporated Area	4,921	16	17	4,954	2,536
Planning Area Total	7,035	86	40	1,590	4,345

15.5.3 Critical Facilities and Infrastructure

All critical facilities (see Figure 6-8 and Figure 6-9) are likely vulnerable to tornadoes. The most common problems associated with this hazard are utility losses. Downed power lines can cause blackouts, leaving large areas isolated. Phone, water, and sewer systems may not function. Roads may become impassable due to downed trees or other debris.

15.5.4 Environment

Environmental features are exposed to tornado risk, although damages are generally localized to the path of the tornado.

15.6 VULNERABILITY

15.6.1 Population

Vulnerable populations are the elderly, low income, or linguistically isolated populations, people with lifethreatening illnesses, and residents living in areas that are isolated from major roads. Power outages can be life threatening to those dependent on electricity for lifes upport. Isolation of these populations is a significant concern. These populations face isolation and exposure after tornado events and could suffer more secondary effects of the hazard.

Individuals caught in the path of a tornado who are unable to seek a ppropriate shelter are especially vulnerable. This may include individuals who are out in the open, in cars, or who do not have access to basements, cellars, or safe rooms. See Table 15-5 for population most vulnerable to tornado events per jurisdiction.

TABLE 15-5 MOST VULNERABLE POPULATION						
Jurisdiction	Youth Population (< 16)	% of Total Population	Elderly Population (> 65)	% of Total Population	Economically Disadvantage (Income < \$20,000)	% of Total Population
City of Giddings	1,473	30.18	706	14.46	366	7.50
City of Lexington	336	28.55	167	14.19	74	6.29
Unincorporated Area	2,536	24.03	1,749	16.57	641	6.07
Planning Area Total	4,345	26.16	2,622	15.78	1,081	6.51

15.6.2 Property

All property is v ulnerable during t ornado events, but p roperties in poor c ondition or in particularly vulnerable locations (rural areas) may risk the most damage.

Loss estimations for tornadoes are not based on damage functions, because no such damage functions have been generated. Instead, loss estimates were developed representing projected damages (annualized loss) on historical events, statistical analysis, and probability factors. These were applied to the exposed value of the county and communities to create an annualized loss. Table 15-6 lists the loss estimates.

TABLE 15-6. LOSS ESTIMATES FOR TORNADO EVENTS					
Jurisdiction	Exposed Value (\$)	Annualized Loss(\$)	Annualized Loss Percentage (%)		
City of Giddings	871,346,709	3,354	<0.01		
City of Lexington	177,669,507	165	<0.01		
Unincorporated Area	1,645,914,085	773,789	0.05		
Planning Area Total	2,694,930,301	777,308	0.03		

Vulnerability Narrative

The vulnerability of tornado events per jurisdiction are described below.

- City of Giddings Approximately 20% of the City of Giddings' housing are manufactured homes. These homes are more susceptible to damages caused by tornados. Loose structures and nonsecured objects can become flying projectiles in an event. Buildings with large spans are more vulnerable as well. If an event were to take out emergency response centers (such as police, fire stations or medical facilities), emergency services would be greatly limited. Residents not part of an emergency service communication system (i.e. Reverse 9 11 or t ornado s irens) a re m ore vulnerable.
- Town of Lexington Tornadoes can easily de stroy poor ly constructed buildings and mobile homes. Approximately 24% of the Town of Lexington's housing is manufactured homes. Debris (such as signage, and non-permanent structures) can become extremely dangerous flying debris during an event as a result of high wind speeds. Older homes constructed without the use of building co des are v ulnerable as well. If major transportation infrastructure were to become blocked or u nusable (i.e. US 77 or FM 696), all residents would be at a greater risk since emergency response time may increase. Residents not informed of the risks and hazards associated with tornadoes are also more vulnerable if a tornado event were to occur.
- Lee County (Unincorporated Area) Approximately 26% of Lee County's Unincorporated Area's housing is manufactured homes. These homes are more susceptible to damages caused by tornados. Rural areas with dead trees and areas of more manufactured homes are more vulnerable to the effects of an event. This is due to the lack of building codes in Unincorporated Areas and quality of construction. Buildings with large spans are more vulnerable as well. Response times to rural communities and residents w ould be g reater e specially if local fire de partments a re affected by the event. It could take longer for other jurisdictional emergency services to get to the affected area as well if a major thoroughfare such as US 77, FM 112, FM 696 or FM 1624 were to become blocked or impassable. Communities not integrating hazard mitigation and community education on risk awareness are also at more risk.

Community Perception of Vulnerability

See front page of current chapter for a summary of ha zard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

15.6.3 Critical Facilities and Infrastructure

Tornadoes can cause significant damage to trees and power lines, block roads with debris, incapacitate transportation, isolate populations, and disrupt ingress and egress. Of particular concern are roads providing access to isolated areas and to the elderly. Any facility that is in the path of a tornado is likely to sustain damage.

15.6.4 Environment

Environmental vulnerability will typically be the same as exposure (discussed in Section 15.5.4); however, if tornadoes impact facilities that store hazardous material, areas impacted by material releases may be especially vulnerable.

15.7 FUTURE TRENDS IN DEVELOPMENT

All future development will be affected by tornadoes, particularly development that occurs at lower elevations. Development regulations that require safe rooms, basements, or other structures that reduce risk to pe ople would decrease vulnerability. Tornadoes that cause damage are uncommon in the county, so mandatory regulations may not be cost-effective.

15.8 SCENARIO

If an F3 or higher tornado were to hit populated areas of the county, substantial damage to property and loss of life could result. Likelihood of injuries and fatalities would increase if warning time was limited before the event or if residents were unable to find adequate shelter. Damage to critical facilities and infrastructure would likely include loss of power, water, sewer, gas and communications. Roads and bridges could be blocked by debris or otherwise damaged. The most serious damage would be seen in the direct path of the tornado, but secondary effects could impact the rest of the county through loss of government services and interruptions in the transportation network. Debris from the tornado would need to be collected and properly disposed. Such an event would likely have substantial negative effects on the local economy.

15.9 ISSUES

Important issues associated with a tornado in the planning area include the following:

- Older building stock in the planning area is built to low code standards or none at all. These structures could be highly vulnerable to tornadoes.
- Redundancy of power supply must be evaluated.
- The capacity for backup power generation is limited.
- Roads and bridges blocked by debris or otherwise damaged might isolate populations.
- Warning time may not be adequate for residents to seek appropriate shelter or such shelter may not be widespread throughout the planning area.
- The impacts of climate change on the frequency and severity of tornadoes are not well understood.
- Building codes may need to be updated so buildings can withstand strong wind loads or provisions may be added for tornado shelters in high risk areas.

CHAPTER 16. WILDFIRE

WILDFIRE RANKING		
Lee County	Medium	
City of Giddings	Medium	
City of Lexington	Medium	

16.1 GENERAL BACKGROUND

According to the 2000 National Fire Plan, the wildland fire risk is now considered by authorities as "the most significant fire service problem of the Century."

A w ildfire i s a ny unc ontrolled f ire oc curring on undeveloped l and t hat requires f ire s uppression. Wildfires c an b e ignited by lig htning o r by hum an activity su ch a s sm oking, campfires, eq uipment u se, and arson.

Fire hazards present a considerable risk to vegetation and w ildlife ha bitats. Short-term l oss cau sed b y a

DEFINITIONS

Conflagration — A fire that grows beyond its original source area to engulf adjoining regions. Wind, extremely dry or hazardous weather conditions, excessive fuel buildup, and explosions are usually the elements behind a wildfire conflagration.

Interface Area — An area susceptible to wildfires and where wildland vegetation and urban or suburban development occur together. An example would be smaller urban areas and dispersed rural housing in forested areas.

Wildfire — Fires that result in uncontrolled destruction of forests, brush, field crops, grasslands, and real and personal property in non-urban areas. Because of their distance from firefighting resources, they can be difficult to contain and can cause a great deal of destruction.

wildfire can include the destruction of timber, wildlife habitat, scenic vistas, and watersheds. Long-term effects include smaller timber harvests, reduced access to affected recreational areas, and destruction of cultural and economic resources and community infrastructure. Vulnerability to flooding increases due to the destruction of watersheds. The potential for significant damage to life and property exists in areas designated as wildland urban interface (WUI) areas, where development is adjacent to densely vegetated areas.

Texas has seen a huge increase in the number of wildfires in the past 30 years. From January 2005 to mid-September 2006, the Texas Forest Service (TFS) responded to 4,370 wildfires that burned 1.6 million acres. More and more people are placing their homes in woodland settings in or near forests, rural areas, or remote mountain sites. M any of t hese hom es a re nestled along r idgelines, c liff-edges, and o ther c lassic f ireinterface hazard zones. There, homeowners enjoy the beauty of the environment but they also face the very real danger of wildfire.

Years of fire suppression has significantly disturbed natural fire occurrences—nature's renewal process. The result has been the gradual accumulation of understory and canopy fuels to levels of density that can feed high-energy, intense wildfires and further increase hazards from and exposure to interface problems.

Fire Protection in Lee County

Fire p rotection in L ee C ounty is divided be tween v olunteer fire de partments, T FS, B ureau of L and Management, and the U.S. Forest Service (USFS). More information about these divisions is provided in Table 16-1. The TFS administers the Community Wildfire Protection Plan (CWPP) to reduce related risks to life, property, and the environment. Its Fire Control D epartment provides leadership in wildland fire protection for state and private lands in Texas.

TABLE 16-1. FIRE PROTECTION SERVICES IN LEE COUNTY AND PARTICIPATING COMMUNITIES					
Fire Protection Service	Unincorporated Area	City of Giddings	City of Lexington		
Local Volunteer Fire Department	Yes	Yes	Yes		
National Park Service	Yes	No	No		
Bureau of Land Management	Yes	No	No		
Texas Commission on Environmental Quality	Yes	Yes	Yes		
Texas Forest Service	Yes	Yes	Yes		
AgriLife	Yes	Yes	Yes		
Texas Parks and Wildlife Department	Yes	Yes	Yes		
Texas Interagency Coordination Center	Yes	Yes	Yes		
U.S. Fish and Wildlife Service	Yes	No	No		
U.S. Forest Service	Yes	No	No		

Vegetation Classes in Lee County

General vegetation for Lee County and participating communities are is described in Table 16-2 and Figure 16-1. The most common vegetation classes in the county is grassland (comprising approximately 65% of the acreage in the county).

TABLE 16-2. VEGETATION CLASSES IN LEE COUNTY AND PARTICIPATING COMMUNITIES				
Class	Acres	% of Area		
Barren Land (Rock/Sand/Clay)	1,932	0.48		
Deciduous Forest	60,194	14.83		
Developed Land	23,675	5.83		
Evergreen Forest	9,995	2.46		
Grassland	264,861	65.26		
Marshland	24,393	6.01		
Mixed Forest	18,379	4.53		
Water	2,398	0.59		
Total	405,827	100		

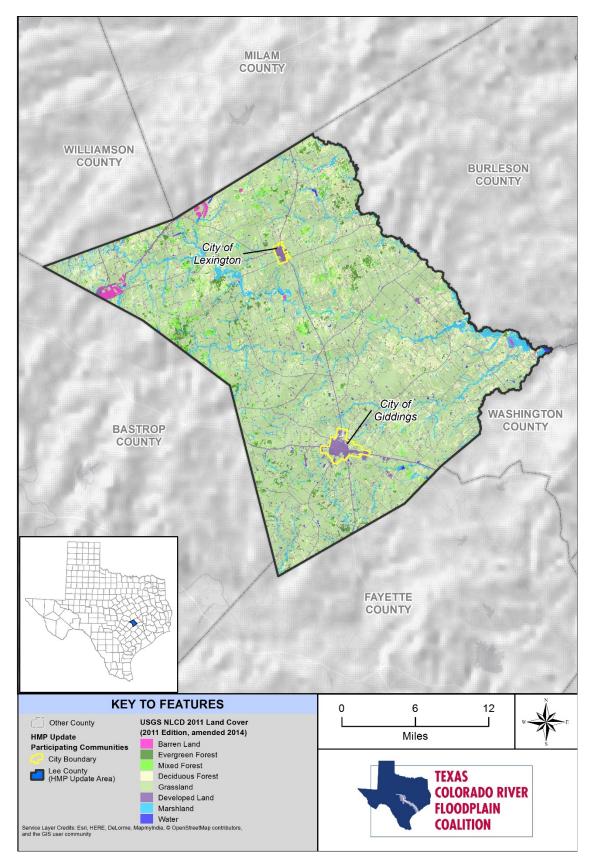


Figure 16-1. Vegetation Types in Lee County and Participating Communities

16.2 HAZARD PROFILE

16.2.1 Past Events

Figure 16-2 through Figure 16-4 show the locations of federally reported wildfires in Lee C ounty and participating communities, documented by federal and state agencies from 1980 through 2014. Recent fires larger than fifty acres are listed in Table 16-3. No detailed descriptions of the wildfire events in Lee County and participating communities were available.

TABLE 16-3. HISTORIC WILDFIRE EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES (50+ ACRES) (1980-2014)				
Fire ID	Name	Cause	Start Date	Acres
652506	N/A	Miscellaneous	1/24/1992	100
652497	N/A	Debris Burning	10/13/1992	50
652498	N/A	Debris Burning	10/13/1992	85
652500	N/A	Miscellaneous	12/11/1992	95
658566	N/A	Smoking	3/11/1996	65
660924	N/A	Lightning	6/15/1998	120
661004	N/A	Smoking	11/17/1999	400
648337	N/A	Debris Burning	1/14/2000	50
651438	N/A	Debris Burning	12/20/2004	75
15781	Freeman Ranch	Miscellaneous	8/30/2005	50
26122	CR 309 Richner (Alcoa)	Debris burning	11/24/2005	75
71337	Central Tx - 43	Equipment use	11/27/2005	200
49406	2016 CR 412	Equipment use	12/25/2005	50
50038	Klienschmidt	Miscellaneous	2/5/2006	50
140	County Road 436 Fire	Equipment use	3/4/2006	50
282	Peterson Fire	Debris burning	3/13/2006	150
996	CR133	Equipment use	6/13/2006	65
128991	CR 342 PR3421 (Brown)	Debris burning	10/17/2007	240
72767	Huff-Lewis	Debris burning	1/3/2008	60
73850	Industrial Road	Miscellaneous	7/20/2008	85
74082	Manheim	Miscellaneous	7/29/2008	50
204783	Old Dime Box	Equipment use	6/11/2009	100
213707	Grass Fire	Equipment use	6/11/2009	200
212246	Tony Seegle	Miscellaneous	7/23/2009	50
201404865	Bostic	Miscellaneous	12/31/2010	50
201406342	FM 112 Grass Fire	Miscellaneous	1/27/2011	50
201338842	Tanglewood (Lee) Fire	Miscellaneous	8/3/2011	200

Source: TxWRAP (https://www.texaswildfirerisk.com/), USGS (http://wildfire.cr.usgs.gov/firehistory/data.html), USDA (http://www.fs.usda.gov/rds/archive/Product/RDS-2013-0009.2/)

Table may list more events than are shown on related figures since some recorded events do not include specific geographic coordinates (GIS-enabled data) for precise graphical representation.

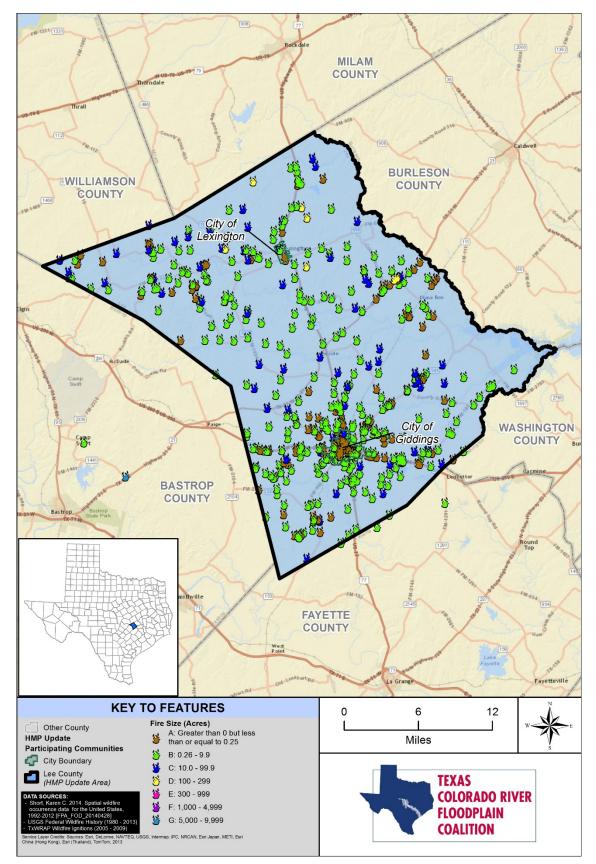


Figure 16-2. Wildfires in Lee County and Participating Communities (1980-2014)

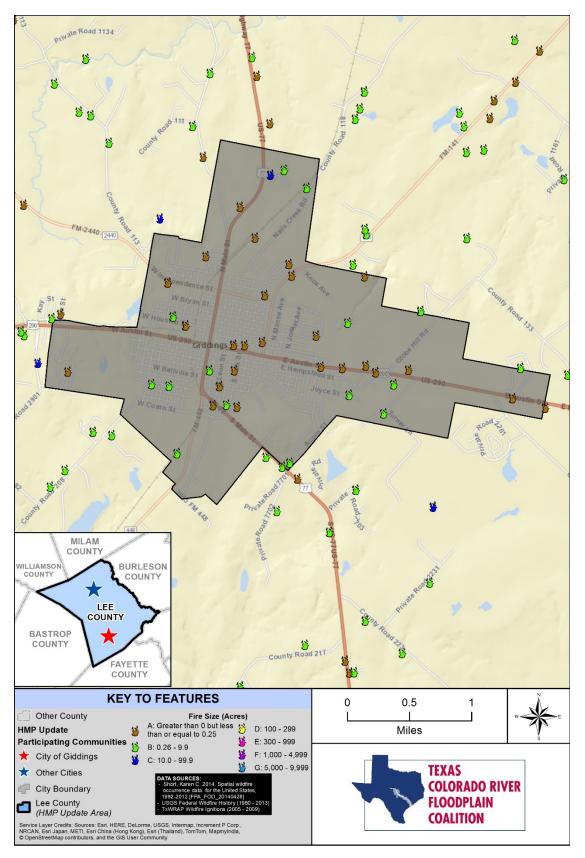


Figure 16-3. Wildfires in City of Giddings (1980-2014)

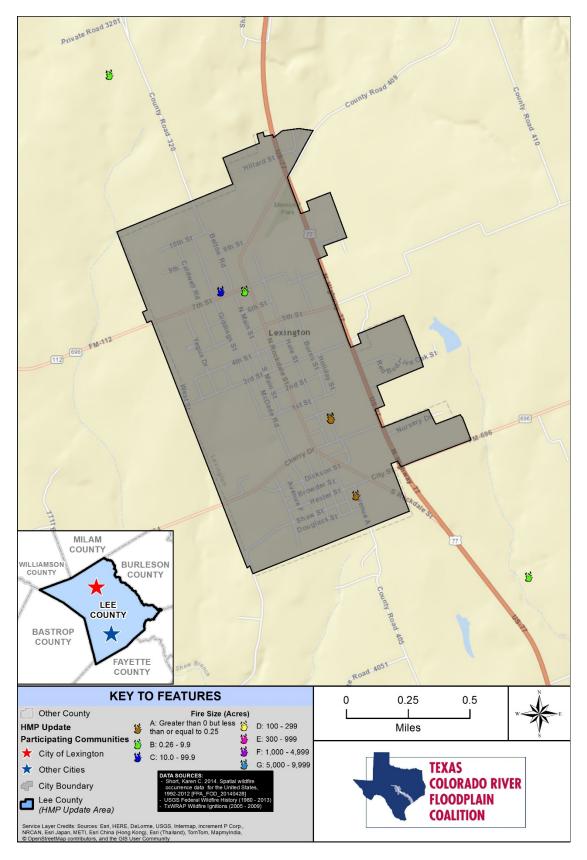


Figure 16-4. Wildfires in City of Lexington (1980-2014)

16.2.2 Location

According to the TFS CWPP, nearly 85% of wildfires in Texas occur within two miles of a community. These wildfires pose a threat to life and property. There are approximately 14,000 communities in Texas that have been identified as "at risk" for potentially devastating fires. Figure 16-5 shows the distribution of wildfire ignitions in Lee County and the participating communities.

Texas is one of the fastest growing states in the nation. Much of this growth is occurring in the WUI area, where structures and other human improvements meet and mix with undeveloped wildland or vegetative fuels. Population growth within the WUI substantially increases the risk from wildfires. For Lee County, the Texas A&M Forest Service Wildfire Risk Assessment Portal (TxWRAP) estimated that 14,394 people or 89% of the total county population (16,228) live within the WUI. The WUI layer reflects housing density depicting where humans and their structures meet or intermix with wildland fuels. Figure 16-6 shows the Lee County housing density within the WUI.

The TxWRAP report for Lee County and the participating communities maps the WUI Response Index, which is a rating of the potential impact of a wildfire on pe ople and their homes. The key input, WUI, reflects housing density (houses per acre) consistent with Federal Register National standards (Figure 16-6). The TxWRAP report states that the location of people living in the WUI and rural areas is essential for defining potential wildfire impacts to people and homes. Figure 16-7 shows the WUI Response Index for Lee County.

According to the TxWRAP report for Lee County, wildfire Values Response Index (VRI) layer reflects a rating of the potential impact of a wildfire on values or assets. The VRI is an overall rating that combines the impact ratings for WUI (housing density) and Pine Plantations (pine age) into a single measure. VRI combines the likelihood of a fire occurring (threat) with those areas of most concern that are adversely impacted by fire to derive a single overall measure of wildfire risk. Figure 16-8 shows the VRI for Lee County and the participating communities.

The TxWRAP report for Lee County maps the Community Protection Zones (CPZ), which represent those areas considered highest priority for mitigation planning activities. CPZs are based on an analysis of the "Where People Live" housing density data and surrounding fire behavior potential. "Rate of Spread" data is us ed to de termine the areas of concern around populated areas that are within a 2-hour fire s pread distance. Figure 16-9 shows the demarcation of CPZs in Lee County.

Finally, wildfire threat or Wildfire Hazard Potential (WHP) is the likelihood of a wildfire occurring or burning into an area. Threat is calculated by combining multiple landscape characteristics including surface and canopy fuels, fire behavior, historical fire occurrences, weather observations, terrain conditions, and other factors. Figure 16-10 through Figure 16-12 maps the WHP for Lee County and the participating communities and each partner community as identified in the 2014 USDA Forest Service, Fire Modeling Institute WHP using data from 1992 to 2012. On its own, WHP is not an explicit map of wildfire threat or risk, but when paired with spatial data depicting highly valued resources and assets such as structures or power lines, it can approximate relative wildfire risk to those specific resources and assets. WHP is also not a forecast or wildfire outlook for any particular season, as it does not include any information on current or forecasted w eather o r f uel m oisture c onditions. I t i s i nstead i ntended for l ong-term st rategic f uels management and appropriate for regional, county, or local protection mitigation or prevention planning.

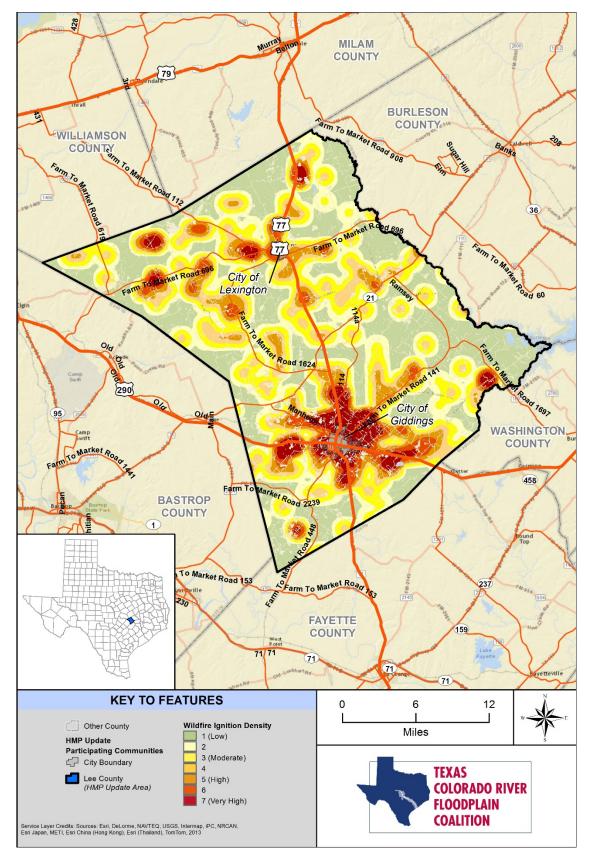


Figure 16-5. Lee County and Participating Communities Wildfire Ignitions Distribution

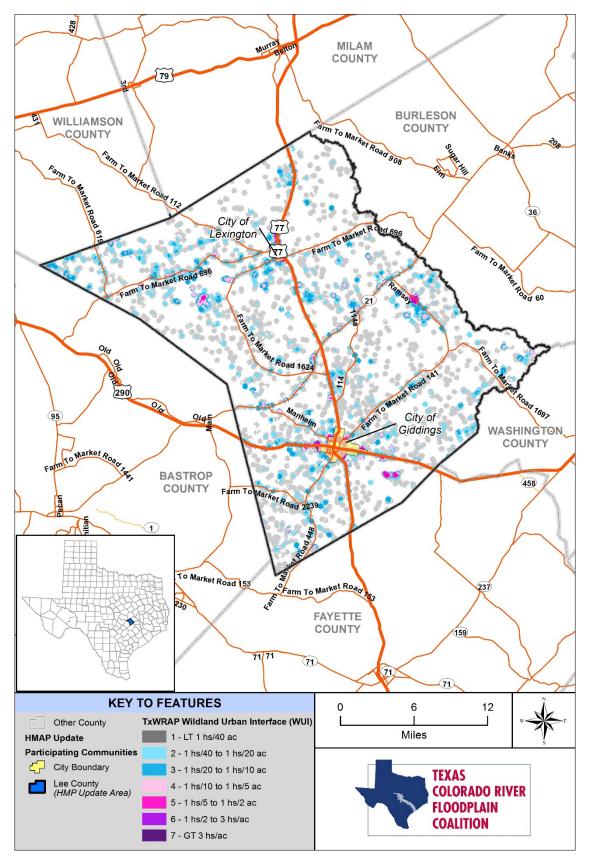


Figure 16-6. Lee County and Participating Communities Wildland Urban Interface

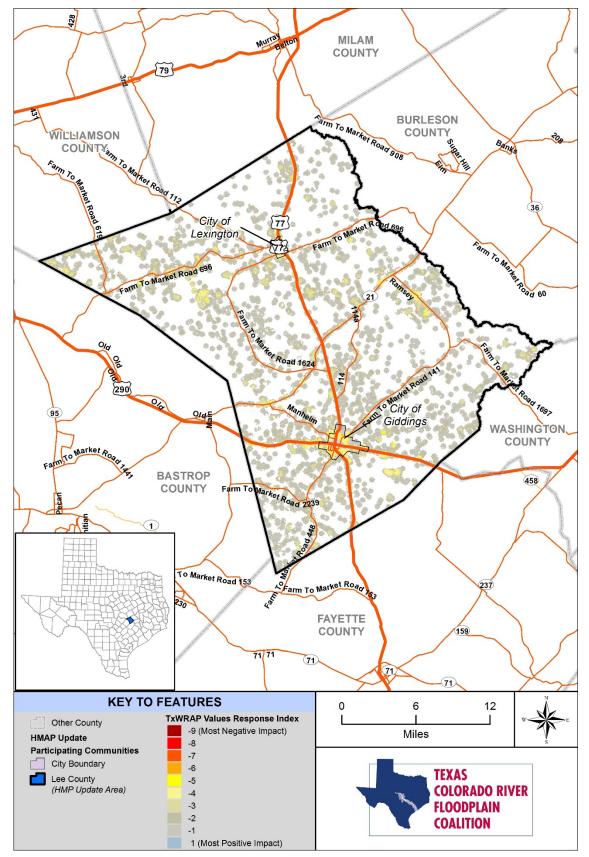


Figure 16-7. Lee County and Participating Communities Wildland Urban Interface Response Index

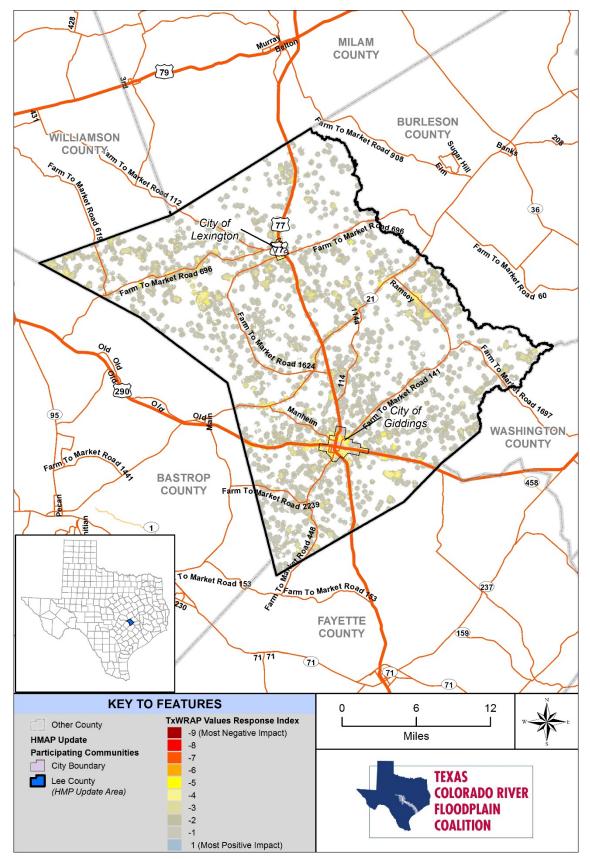


Figure 16-8. Lee County and Participating Communities Wildfire Values Response Index

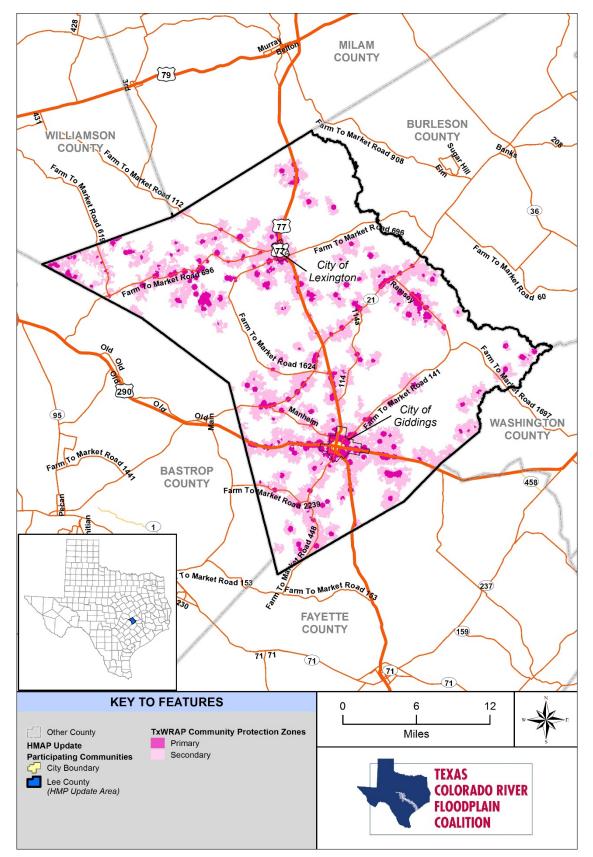


Figure 16-9. Lee County and Participating Communities Wildfire Community Protection Zones

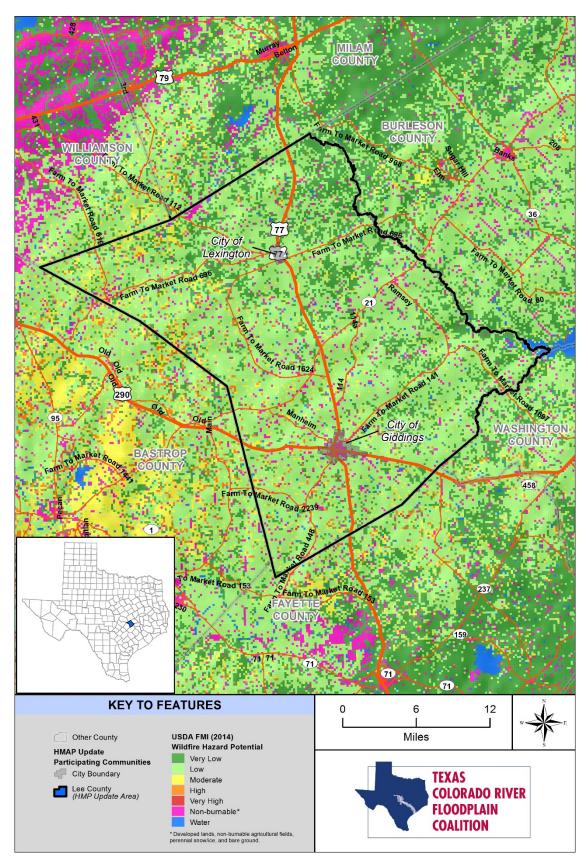


Figure 16-10. Lee County and Participating Communities Wildfire Hazard Potential

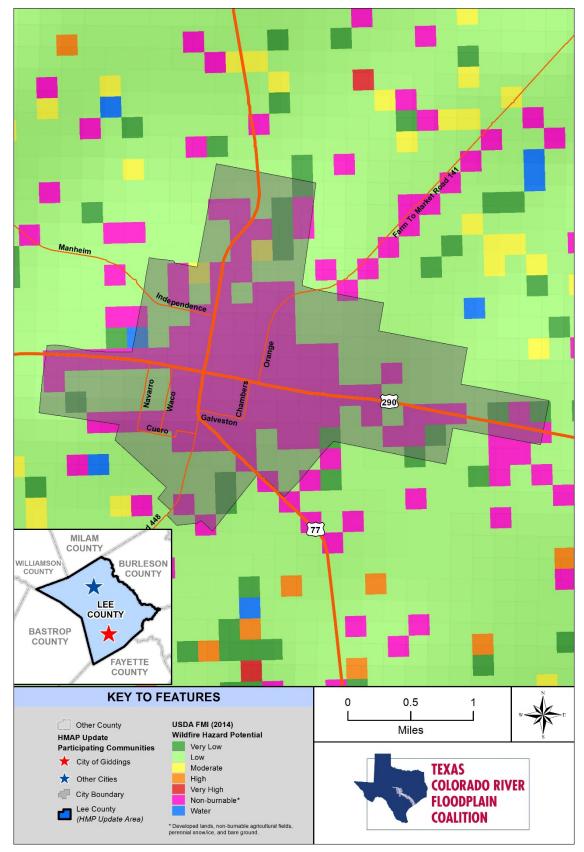


Figure 16-11. City of Giddings Wildfire Hazard Potential

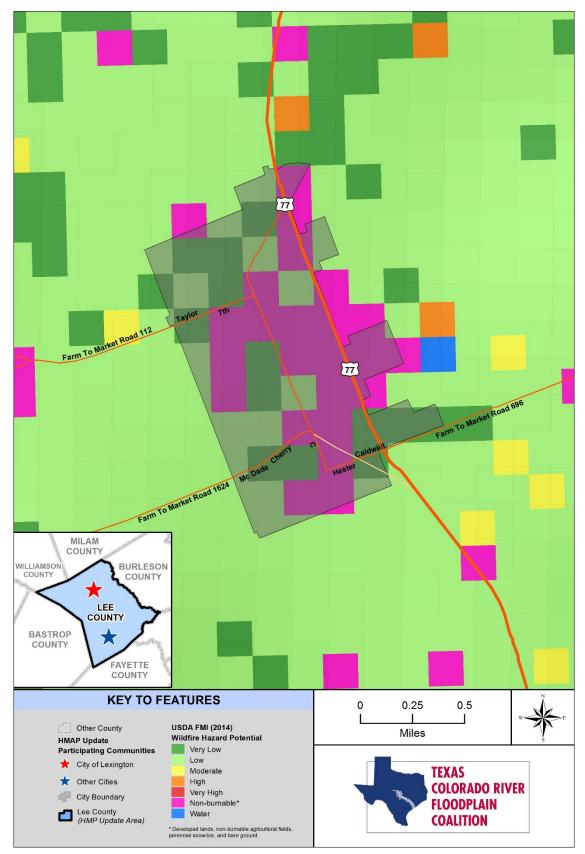


Figure 16-12. City of Lexington Wildfire Hazard Potential

16.2.3 Frequency

Wildfires occur throughout the year and these fires are expected to be greater than 50 acres in size. Based on pr evious events and historical records, there is 100% chance of an event occurring in Lee County unincorporated areas. There is a 95% chance of an event occurring in the City of Giddings. There is a 12% chance of an event occurring in the City of Lexington. The probability of future events are the same for each participating communities as stated in the preceding sentences. Future wildfires for all participating communities can be expected to be greater than 50 acres in size. Future events size and strength can be expected to be similar to previous events. Previous events are listed in Table 16-3 and Figure 16-2.

16.2.4 Severity

The overall significance of the hazard for Lee County and the City of Giddings is considered high (event possible in the next year). The City of Lexington has an overall significance of an event is unlikely (event probable in the next 3 years). Based on the information in this hazard profile, and the widespread impacts, the m agnitude/severity of severe w ildfires is considered low or limited to m edium or m ajor for the participating communities – isolated deaths and multiple injuries; major or long-term property damage that threatens structural stability; or interruption of essential facilities and services for 24 to 72 hours; as well as longer duration economic impact due to interrupted tourism, which plays a major part in the economy of Lee County and the participating communities.

16.2.5 Warning Time

Wildfires are often caused by humans, intentionally or accidentally. There is no way to predict when one might break out. Because fireworks often cause brush fires, extra diligence is warranted around the Fourth of July when the use of fireworks is highest. Dry seasons and droughts are factors that greatly increase fire likelihood. Dry lightning may trigger wildfires. Severe weather can be predicted, so special attention can be paid during weather events that may include lightning. Reliable NWS lightning warnings are available on average 24 to 48 hours before a significant electrical storm.

If a fire does break out and spreads rapidly, residents may need to evacuate within days or hours. A fire's peak burning period generally is between 1:00 p.m. and 6:00 p.m. Once a fire has started, fire alerting is reasonably rapid in most cases. The rapid spread of cellular and two-way radio communications in recent years has further contributed to a significant improvement in warning time.

16.3 SECONDARY HAZARDS

Wildfires can generate a range of secondary effects, which in some cases may cause more widespread and prolonged damage than the fire itself. Fires can cause direct economic losses in the reduction of harvestable timber and indirect economic losses in reduced tourism. Wildfires cause the contamination of reservoirs, destroy transmission lines, and contribute to flooding. They strip slopes of vegetation, exposing them to greater amounts of runoff. This in turn can weaken soils and cause failures on slopes. Major landslides can occur several years after a wildfire. Most wildfires burn hot and for long durations that can bake soils, especially those high in clay content, increasing the imperviousness of the ground. This increases the runoff generated by storm events, thus increasing the chance of flooding.

16.4 CLIMATE CHANGE IMPACTS

Fire in western ecosystems is affected by climate variability, local topography, and human intervention. Climate change has the potential to affect multiple elements of the wildfire system: fire behavior, ignitions, fire management, and vegetation fuels. Hot, dry spells create the highest fire risk. Increased temperatures may intensify wildfire danger by warming and drying out vegetation. When climate alters fuel loads and fuel moisture, forest susceptibility to wildfires changes. Climate change also may increase winds that spread fires. Faster fires are harder to contain, and thus are more likely to expand into residential neighborhoods.

Historically, drought patterns in the West and Midwest are related to large-scale climate patterns in the Pacific and Atlantic Oceans. The El Niño–Southern Oscillation in the Pacific varies on a 5- to 7-year cycle, the Pacific Decadal Oscillation varies on a 20- to 30-year cycle, and the Atlantic Multidecadal Oscillation varies on a 65- to 80-year cycle. As these large-scale ocean climate patterns vary in relation to each other, drought conditions in the U.S. shift from region to region.

Climate scenarios project summer temperature increases between 2 and 5 degrees Celsius (°C) (35.6 to 41° F) and precipitation decreases of up to 15% by 2100. Such conditions would exacerbate summer drought and further p romote w ildfires, releasing s tores of carbon and further c ontributing to the buildup of greenhouse gases. Forest response to increased atmospheric carbon dioxide – the so-called "fertilization effect" – could also contribute to more tree growth and thus more fuel for fires, but the effects of carbon dioxide on m ature forests a re s till largely unk nown. H igh c arbon di oxide l evels s hould enhance t ree recovery after fire and young forest regrowth, as long as sufficient nutrients and soil moisture are available, although the latter is in question for many parts of the western United States because of climate change.

16.5 EXPOSURE

Since wildfire cannot be directly modeled in HAZUS, annualized losses were estimated using GIS-based analysis, historical data analysis, and statistical risk assessment methodology. Event frequency, severity indicators, expert opinions, and historical knowledge of the region were used for this assessment. The primary data source was the updated HAZUS inventory data (updated with 2010 U.S. Census data and 2014 RS Means S quare F oot C osts) augmented with state and federal data sets as well as TxWRAP, USGS Federal Wildfire History, Fire Program Analysis Fire-Occurrence Database (FPA-FOD), CWPP, and the USDA WHP data. Information for the exposure analyses provided in the sections below was based on data sources above.

16.5.1 Population

TABLE 16-4. POPULATION WITHIN WILDFIRE RISK AREAS												
Non- JurisdictionNon- Burnable*Very LowLowModerateHighTotal												
City of Giddings	3,549	143	1,148	39	0	0	4,879					
City of Lexington	682	289	205	0	0	0	1,176					
Unincorporated Area	887	1,595	7,233	585	177	11	10,488					
Planning Area Total	5,118	2,027	8,586	624	177	11	16,543					

Population estimates within the WHP areas are shown in Table 16-4.

* Non-Burnable classification includes developed lands, non-burnable agricultural fields, perennial snow or ice, bare ground, and permanent water areas.

16.5.2 Property

Property damage from wildfires can be severe and can significantly alter entire communities. Table 16-5 through Table 16-9 display the number of structures in the various wildfire hazard zones within the planning area and their values. For all tables, property data are from the HAZUS 2014 data inventory (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs).

TABLE 16-5. EXPOSURE AND VALUE OF STRUCTURES IN VERY LOW WILDFIRE RISK AREAS											
	Exposed		Value Exposed (\$)		% of Total Assessed						
Jurisdiction	Buildings -	Structure	Contents	Total	Value						
City of Giddings	45	12,686,978	7,619,126	20,306,104	2.33						
City of Lexington	119	24,561,966	13,691,433	38,253,399	21.53						
Unincorporated Area	788	163,540,096	90,763,255	254,303,351	15.45						
Planning Area Total	952	200,789,040	112,073,814	312,862,854	11.61						

TABLE 16-6. EXPOSURE AND VALUE OF STRUCTURES IN LOW WILDFIRE RISK AREAS											
Jurisdiction	Exposed		Value Exposed (\$)								
	Buildings -	Structure	Contents	Total	Assessed Value						
City of Giddings	349	96,435,433	64,864,826	161,300,259	18.51						
City of Lexington	92	17,966,268	9,596,899	27,563,167	15.51						
Unincorporated Area	3,455	730,363,605	409,051,799	1,139,415,404	69.23						
Planning Area Total	3,896	844,765,306	483,513,524	1,328,278,830	49.29						

TABLE 16-7. EXPOSURE AND VALUE OF STRUCTURES IN MODERATE WILDFIRE RISK AREAS												
	Exposed		Value Exposed (\$)									
Jurisdiction	Buildings	Structure	Contents	Total	Value							
City of Giddings	7	5,887,474	4,111,090	9,998,564	1.15							
City of Lexington	0	0	0	0	0							
Unincorporated Area	266	59,346,083	32,347,202	91,693,285	5.57							
Planning Area Total	273	65,233,557	36,458,292	101,691,849	3.77							

TABLE 16-8. EXPOSURE AND VALUE OF STRUCTURES IN HIGH WILDFIRE RISK AREAS												
	Exposed		% of Total Assessed									
Jurisdiction	Buildings	Structure	Contents	Total	Value							
City of Giddings	0	0	0	0	0							
City of Lexington	0	0	0	0	0							
Unincorporated Area	82	18,541,086	9,952,332	28,493,418	1.73							
Planning Area Total	82	18,541,086	9,952,332	28,493,418	1.06							

TABLE 16-9. EXPOSURE AND VALUE OF STRUCTURES IN VERY HIGH WILDFIRE RISK AREAS											
	Exposed		Value Exposed (\$)	1	% of Total Assessed						
Jurisdiction	Buildings	Structure	Contents	Total	Value						
City of Giddings	0	0	0	0	0						
City of Lexington	0	0	0	0	0						
Unincorporated Area	6	1,201,448	622,547	1,823,995	0.11						
Planning Area Total	6	1,201,448	622,547	1,823,995	0.07						

Present Land Use

Present land use for each wildfire risk area is described in Table 16-10.

WILDFIRE RISK A		TABLE 16-10. SENT LAND		DR LEE COU	INTY
		Wildfire	Risk Class and Ar	ea (acres)	
Present Land Cover Class	Very Low	Low	Moderate	High	Very High
Barren Land (Rock/Sand/Clay)	147	1014	227	24	0
Deciduous Forest	22,569	30,613	3,816	1,213	52
Developed Land	2,632	14,432	940	271	6
Evergreen Forest	3,916	3,036	1,307	1,337	102
Grassland	23,578	213,240	10,175	2,173	169
Marshland	9,936	9,912	2,968	293	21
Mixed Forest	7,279	7,477	1,907	1,102	59
Open Water	226	1,306	108	23	5

16.5.3 Critical Facilities and Infrastructure

Table 16-11 identifies critical facilities exposed to the wildfire hazard in the county.

CRITICAL FACI	T LITIES AND INFR	ABLE 16-11 ASTRUCTU		IRE RISK C	LASS
	Critic	al Facilities an	d Infrastructure per	r Wildfire Risk	c Class
	Very Low	Low	Moderate	High	Very High
Medical and Health	0	0	0	0	0
Government Functions	1	0	0	0	0
Protective Functions	1	2	0	0	0
Schools	0	7	0	0	0
Hazardous Materials	1	5	0	0	0
Bridges	28	64	12	1	0
Water Storage	0	0	0	0	0
Wastewater	1	2	0	0	0
Power	0	1	0	0	0
Communications	0	1	0	0	0
Transportation	0	2	0	0	0
Dams	2	17	1	2	0

16.5.4 Environment

Fire is a natural and critical ecosystem process in most terrestrial ecosystems, dictating in part the types, structure, and sp atial extent of n ative v egetation. H owever, w ildfires c an c ause s evere e nvironmental impacts:

- Soil Erosion The protective covering provided by foliage and dead organic matter is removed, leaving the soil fully exposed to wind and water erosion. Accelerated soil erosion occurs, causing landslides and threatening aquatic habitats.
- **Spread of Invasive Plant Species** Non-native woody plant species frequently invade burned areas. When weeds become established, they can dominate the plant cover over broad landscapes, and become difficult and costly to control.
- **Disease and Insect Infestations** Unless diseased or insect-infested trees are swiftly removed, infestations and disease can spread to healthy forests and private lands. Timely active management actions are needed to remove diseased or infested trees.
- **Destroyed Endangered Species Habitat** Catastrophic fires can have devastating consequences for endangered species.
- Soil Sterilization Topsoil exposed to extreme heat can become water repellant, and soil nutrients may be lost. It can take decades or even centuries for ecosystems to recover from a fire. Some fires burn so hot that they can sterilize the soil.

Many ecosystems are adapted to historical patterns of fire occurrence. These patterns, called "fire regimes," include temporal a ttributes (e.g., f requency and seasonality), s patial attributes (e.g., s ize and spatial complexity), and magnitude attributes (e.g., intensity and severity), each of which have ranges of natural variability. Ecosystem stability is threatened when any of the attributes for a given fire regime diverge from its range of natural variability.

16.6 VULNERABILITY

Structures, ab oveground infrastructure, c ritical f acilities, ag ricultural ar ea (crops and structures), an d natural en vironments are all vulnerable to the wildfire hazard. There is c urrently no validated d amage function available to support wildfire mitigation planning. Except as discussed in this section, vulnerable populations, p roperty, infrastructure, and e nvironment are a ssumed to be the same as described in the section on exposure.

16.6.1 Population

Smoke and air pollution from wildfires can be a severe health hazard, especially for sensitive populations, including children, the elderly, and those with respiratory and cardiovascular diseases. Smoke generated by wildfire consists of visible and invisible emissions that contain particulate matter (soot, tar, water vapor, and m inerals), g ases (carbon m onoxide, c arbon d ioxide, n itrogen ox ides), and t oxics (formaldehyde, benzene). E missions from w ildfires de pend on t he type of fuel, the m oisture c ontent of the fuel, the efficiency (or temperature) of combustion, and the weather. Public health impacts associated with wildfire include difficulty in breathing, odor, and reduction in visibility.

Wildfire may also threaten the health and safety of those fighting the fires. First responders are exposed to the dangers from the initial incident and after-effects from smoke inhalation and heat stroke.

The increasing demand for outdoor recreation places more people outside and in higher wildfire risk areas during holidays, weekends, and vacation periods. Table 16-4 contains more detailed information. Property

Loss estimations for wildfire hazard are not based on damage functions, because no such damage functions have been generated. Instead, loss estimates were developed representing projected damages (annualized loss) on historical events, statistical analysis and probability factors. These were applied to the exposed values of the county and communities to create an annualized loss. Table 16-12 lists the loss estimates for the general building stock for jurisdictions that have an exposure to a wildfire risk category.

LO	TABLE 16-12. LOSS ESTIMATES FOR WILDFIRE EVENTS											
Jurisdiction	Exposed Value	Annualized Loss	Annualized Loss Percentage									
City of Giddings	\$19,662,609	Negligible	<0.01									
City of Lexington	\$3,138,851	Negligible	<0.01									
Unincorporated Area	\$162,481,751	Negligible	< 0.01									
Planning Area Total	\$185,283,211	Negligible	<0.01									

Community Perception of Vulnerability

See front page of current chapter for a summary of ha zard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

16.6.2 Critical Facilities and Infrastructure

Critical facilities of wood frame construction are especially vulnerable during wildfire events. In the event of wildfire, there would likely be little damage to most infrastructure. Most roads and railroads would be without damage except in the worst scenarios. Power lines are the most at risk from wildfire because most poles are made of wood and susceptible to burning. Fires can create conditions that block or prevent access and can isolate residents and emergency service providers. Wildfire typically does not have a major direct impact on bridges, but it can create conditions in which bridges are obstructed. Many bridges in areas of high to moderate fire risk are important because they provide the only ingress and egress to large areas and in some cases to isolated neighborhoods.

16.6.3 Environment

Environmental vulnerability will typically be the same as exposure (as discussed in Section 16.5).

16.7 FUTURE TRENDS IN DEVELOPMENT

The threat of wildfire is a constant in Texas. From the East Texas Piney Woods to the Davis Mountains of West Texas, wildfires burn thousands, if not millions, of acres each year. Wildfires become especially dangerous when wildland vegetation begins to intermix with homes.

With more and more people living in the WUI, it is increasingly important for local officials to plan and prepare for wildfires. CWPPs are a proven strategy for reducing the risk of catastrophic wildfires and protecting lives and property.

TFS encourages Texas counties and communities to develop and adopt CWPPs to better prepare their region and citizens for wildfires. Planning for wildfires should take place long before a community is threatened. Once a wildfire ignites, the only option available to firefighters is to attempt to suppress the fire before it reaches a community. A CWPP is unique in that it empowers communities to share the responsibility of determining the best strategies for protection against wildfire.

The Texas CWPP calls for communities to:

- Know their environment (WUI), assets at risk, fire occurrence and behavior, and overall wildfire risks
- Adopt mitigation strategies from wildfire preventions to fuels reduction to capacity building
- Create and adopt recovery plan strategies

16.8 SCENARIO

A major conflagration in the planning area might begin with a wet spring, adding to fuels already present on the forest floor. Flash fuels would build throughout the spring. The summer could see the onset of insect infestation. A dry summer could follow the wet spring, exacerbated by dry hot winds. Carelessness with combustible materials or a tossed lit cigarette, or a sudden lightning storm could trigger a multitude of small isolated fires.

The embers from these smaller fires could be carried miles by hot, dry winds. The deposition zone for these embers would be deep in the forests and interface zones. Fires that start in flat areas move slower, but wind still pushes them. It is not unusual for a wildfire pushed by wind to burn the ground fuel and later climb into the crown and reverse its track. This is one of many ways that fires can escape containment, typically

during periods when r esponse c apabilities are overwhelmed. These new small fires would most likely merge. Suppression resources would be redirected from protecting the natural resources to saving more remote subdivisions.

The worst-case scenario would include an active fire season throughout Texas, spreading resources thin. Firefighting teams would be exhausted or unavailable. Many federal assets would be responding to other fires that started earlier in the season. While local fire districts would be extremely useful in the urban interface areas, they have limited wildfire capabilities or experience, and they would have a difficult time responding to the ignition zones. Even though the existence and spread of the fire is known, it may not be possible to respond to it a dequately, so an initially manageable fire can become out of control before resources are dispatched.

To further complicate the problem, heavy rains could follow, causing flooding and landslides, and releasing tons of sediment into Cummins Creek, Yegua Creek (including East, Middle and West Yegua Creek), and other area creeks. This in turn could permanently change floodplains and damage sensitive habitat and riparian areas. Such a fire followed by rain could release millions of cubic yards of sediment into streams for y ears, cr eating ne w floodplains and c hanging e xisting one s. With the forests removed f rom t he watershed, stream flows could easily double. Floods that could be expected every 50 years may occur every couple of years. With the streambeds unable to carry the increased discharge because of increased sediment, the floodplains and floodplain elevations would increase.

16.9 ISSUES

The major issues for wildfire are the following:

- Public education and outreach to people living in or near the fire hazard zones should include information about and assistance with mitigation activities such as defensible space, and advance identification of evacuation routes and safe zones.
- Wildfires could cause landslides as a secondary natural hazard.
- Climate change could affect the wildfire hazard.
- Future growth into interface areas should continue to be managed.
- Area fire districts need to continue to train on WUI events.
- Vegetation management activities should be enhanced.
- Regional consistency of higher building code standards should be adopted such as r esidential sprinkler requirements and prohibitive combustible roof standards.
- Fire department water supply in high risk wildfire areas.
- Expand certifications and qualifications for fire department personnel. Ensure that all firefighters are trained in basic wildfire behavior, basic fire weather, and that all company officers and chief level officers are trained in the wildland command and strike team leader level.
- Both the natural and man-made conditions that contribute to the wildland fire hazard are tending to exacerbate through time.
- Conservative forestry management practices have resulted in congested forests prone to fire and disease.
- The continued migration of inhabitants to remote areas of the county increases the probability of human-caused ignitions from vehicles, grills, campfires, and electrical devices.

CHAPTER 17. WINTER WEATHER

WINTER WEATHER RANKING									
Lee County	High								
City of Giddings	High								
City of Lexington	Medium								

17.1 GENERAL BACKGROUND

Winter s torms ca n i nclude h eavy sn ow, ice, an d blizzard c onditions. H eavy s now c an i mmobilize a region, s tranding c ommuters, stopping t he f low of supplies, a nd di srupting emergency and medical services. A ccumulations of snow can collapse roofs and knock down trees and power lines. In rural areas, homes a nd farms m ay be i solated for da ys, and unprotected livestock may be lost. The cost of snow removal, damage repair, and business losses can have a tremendous impact on cities and towns.

Heavy accumulations of i ce can bring down trees, electrical w ires, t elephone pol es a nd lines, and

DEFINITIONS

Freezing Rain — The result of rain occurring when the temperature is below the freezing point. The rain freezes on impact, resulting in a layer of glaze ice up to an inch thick. In a severe ice storm, an evergreen tree 60 feet high and 30 feet wide can be burdened with up to 6 tons of ice, creating a threat to power and telephone lines and transportation routes.

Severe Local Storm — Small-scale atmospheric systems, including tornadoes, thunderstorms, windstorms, ice storms, and snowstorms. These storms may cause a great deal of destruction and even death, but their impact is generally confined to a small area. Typical impacts are on transportation infrastructure and utilities.

Winter Storm — A storm having significant snowfall, ice, or freezing rain; the quantity of precipitation varies by elevation.

communication towers. Communications and power can be disrupted for days until damage can be repaired. Even small accumulations of ice may cause extreme hazards to motorists and pedestrians.

Some winter storms are accompanied by strong winds, creating blizzard conditions with blinding winddriven snow, severe drifting, and dangerous wind chills. Strong winds with these intense storms and cold fronts can knock down trees, utility poles, and power lines. Blowing snow can reduce visibilities to only a few feet in areas where there are no trees or buildings. Serious vehicle accidents can result in injuries and deaths.

Winter storms in Lee County, including strong winds and ice conditions, can result in property damage, localized power and phone outages and closures of streets, highways, schools, businesses, and nonessential government o perations. P eople can all so b ecome i solated f rom essential services in t heir hom es and vehicles. A winter storm can escalate, c reating life threatening situations when emergency r esponse is limited by sev ere winter conditions. Other issues asso ciated with severe winter weather include hypothermia and the threat of physical overexertion that may lead to heart attacks or strokes. Snow and ice prevention as well as removal costs can impact budgets significantly.

17.1.1 Extreme Cold

Extreme cold often accompanies a winter storm or is left in its wake. It is most likely to occur in the winter months of D ecember, January, and F ebruary. P rolonged e xposure to the c old c an cause f rostbite or hypothermia and can become life-threatening. Infants and the elderly are most susceptible. Pipes may freeze and burst in homes or buildings that are poorly insulated or without heat. Extreme cold can disrupt or impair communications facilities.

In 2001, the NWS implemented an updated wind chill temperature index (see Figure 17-1). This index describes the relative discomfort or danger resulting from the combination of wind and temperature. Wind

chill is based on the rate of heat loss from exposed skin caused by wind and cold. As the wind increases, it draws heat from the body, driving down skin temperature and eventually the internal body temperature. *Source: NOAA, NWS*

									Tem	pera	ture	(°F)							
	Calm	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
	5	36	31	25	19	13	7	1	-5	-11	-16	-22	-28	-34	-40	-46	-52	-57	-63
	10	34	27	21	15	9	3	-4	-10	-16	-22	-28	-35	-41	-47	-53	-59	-66	-72
	15	32	25	19	13	б	0	-7	-13	-19	-26	-32	-39	-45	-51	-58	-64	-71	-77
	20	30	24	17	11	4	-2	-9	-15	-22	-29	-35	-42	-48	-55	-61	-68	-74	-81
(Ho	25	29	23	16	9	3	-4	-11	-17	-24	-31	-37	-44	-51	-58	-64	-71	-78	-84
Ĭ	30	28	22	15	8	1	-5	-12	-19	-26	-33	-39	-46	-53	-60	-67	-73	-80	-87
Wind (mph)	35	28	21	14	7	0	-7	-14	-21	-27	-34	-41	-48	-55	-62	-69	-76	-82	-89
Ν	40	27	20	13	6	-1	-8	-15	-22	-29	-36	-43	-50	-57	-64	-71	-78	-84	-91
	45	26	19	12	5	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79	-86	-93
	50	26	19	12	4	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81	-88	-95
	55	25	18	11	4	-3	-11	-18	-25	-32	-39	-46	-54	-61	-68	-75	-82	-89	-97
	60	25	17	10	3	-4	-11	-19	-26	-33	-40	-48	-55	-62	-69	-76	-84	-91	-98
					Frostb	ite Tir	nes	3	0 minut	tes	10	0 minut	es 🗌	5 m	inutes				
			W	ind (Chill							75(V ⁴ Wind S			275	(V ^{0.1}		ctive 1	1/01/01

Figure 17-1. National Weather Service Wind Chill Chart

A wind chill watch is issued by the NWS when wind chill warning criteria are possible in the next 12 to 36 hours. A wind chill warning is issued for wind chills of at least -25°F on plains and -35°F in mountains and foothills.

Table 17-1 contains a summary of temperature data related to extreme cold for the Lee weather station. These temperatures apply to all of Lee County and participating communities.

	TABLE 17-1. TEMPERATURE DATA (°F) FROM LEE, TEXAS STATION (418415)												
Statistic	Years Analyzed	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
High Annual Minimum	1915-2014	31	33	42	49	60	74	73	71	71	48	40	37
Low Annual Minimum	1915-2014	8	12	18	30	38	52	60	58	41	25	19	2
Avg. Annual Minimum	1915-2014	21.6	24.3	30.5	39.7	50.0	61.9	67.4	66.8	54.0	41.0	30.2	23.7
Avg. Annual Days with Minimum Below 32°	1930-2012	10.4	5.6	1.6	0.1	0.0	0.0	0.0	0.0	0.0	0.1	2.1	7.7
Note: All temperature	s are in degrees	Fahrenł	neit.										

Few areas of Texas escape freezing weather in any winter. Lee County and the participating communities receive little to no snow accumulations. More often than not, snow falling in the southern half of the state

melts and does not stick to the surface; snow stays on the ground only once or twice every decade. Snowfall occurs at least once every winter in the northern half of Texas.

17.1.2 Ice and Snow

An ice storm occurs when freezing rain falls and freezes immediately upon impact. Communications and power can be disrupted for days, and even small a ccumulations of ice may cau se ex treme hazards to motorists and pedestrians. A freeze is weather marked by low temperatures below 32 degrees Fahrenheit. Agricultural production is seriously affected when temperatures remain below the freezing point for an extended period of time. Areas unaccustomed to freezing temperatures are more susceptible to are more susceptible to associated damages and threats to public health and safety. Two commonly used indices that measure snow and ice impacts are the Sperry-Piltz Ice Accumulation Index and the Regional Snowfall Index.

The Sperry-Piltz Ice Accumulation Index, or SPIA Index, is an ice accumulation and damage prediction index that uses an algorithm of researched parameters that, when combined with National Weather Service forecast data, predicts the projected footprint, total ice accumulation, and resulting potential damage from approaching ice storms. It is a tool to be used by the National Weather Service, FEMA as well as other agencies and communities for risk management and winter weather preparedness. The SPIA Index is listed below. The SPIA Index's Index range from 0 (lowest) – 5 (most extreme event). All participating areas have typically experience 0-1 (SPIA Index) with an occasional 2 index event. SPIA Ice Damage Index of 0 has an average ice amount of <0.25° and wind less than 15mph. SPIA Ice Damage Index of 1 has an average ice amount of 0.1°-0.5° and wind of 15-25mph. SPIA Ice Damage Index of 2 has an average ice amount of 0.1°-0.75° and wind of 17.2.1.

ICE DAMAGE INDEX	* AVERAGE NWS ICE AMOUNT (in inches) *Revised-October, 2011	WIND (mph)	DAMAGE AND IMPACT DESCRIPTIONS			
0	< 0.25	< 15	Minimal risk of damage to exposed utility systems; no alerts or advisories needed for crews, few outages			
1	0.10 - 0.25	15 - 25	Some isolated or localized utility interruptions are possible, typically lasting only a few hours. Roads			
L	0.25 - 0.50	> 15	and bridges may become slick and hazardous.			
	0.10-0.25	25 - 35	Scattered utility interruptions expected, typically			
2	0.25-0.50	15 - 25	lasting 12 to 24 hours. Roads and travel conditions may be extremely hazardous due to ice accumulation			
	0.50 - 0.75	< 15	may be extremely nazardous due to ice accumulation			
	0.10-0.25	> = 35	Numerous utility interruptions with some			
3	0.25 - 0.50	25 - 35	damage to main feeder lines and equipment			
3	0.50 - 0.75	15 - 25	expected. Tree limb damage is excessive.			
	0.75 - 1.00	< 15	Outages lasting 1 – 5 days.			
	0.25 - 0.50	> = 35	Prolonged & widespread utility interruption			
100	0.50 - 0.75	25 - 35	with extensive damage to main distribution			
4	0.75 - 1.00	15 - 25	feeder lines & some high voltage transmission			
	1.00 - 1.50	< 15	lines/structures. Outages lasting 5 - 10 days.			
	0.50 - 0.75	> = 35				
5	0.75 - 1.00	> = 25	Catastrophic damage to entire exposed utility systems, including both distribution and			
2	1.00 - 1.50	>=15	transmission networks. Outages could last			
	> 1.50	Any	several weeks in some areas. Shelters needed			

(Categories of damage are based upon combinations of precipitation totals, temperatures and wind speeds/directions.) Figure 17-2. Sperry-Piltz Ice Accumulation Index, SPIA Index (Updated Feb 2009, revised Oct 2011) The Regional Snowfall Index (RSI) is used to assess the societal impact of winter storms in the state of Texas. RSI is based on the spatial extent of the storm, the amount of snowfall, and the juxtaposition of these elements with population. Including population information ties the index to societal impacts. The Regional Snowfall I ndex i s l isted be low. R arely doe s L ee County a nd participating communities e xperience significant snowfall. Previous events are described in section 17.2.1.

Category	RSI Value	Description	Snowfall Threshold (in.)
1	1-3	Notable	2"
2	3-6	Significant	5"
3	6-10	Major	10"
4	10-18	Crippling	15"
5	18.0+	Extreme	>15"

REGINAL SNOWFALL INDEX (RSI)

Few areas of Texas escape freezing weather in any winter. A snowfall with an accumulation of four or more inches in a 12-hour period is considered a heavy snowfall. Snow accumulations of that amount are usually experienced in the northern half of the state and in the higher elevations of West Texas. These areas do not include L ee C ounty. L ee C ounty a nd t he p articipating c ommunities r eceives l ittle t o no s now accumulations. More often than not, snow falling in the southern half of the state melts and does not stick to the surface; snow stays on the ground only once or twice every decade. Snowfall occurs at least once every winter in the northern half of Texas. Previously, Lee County and all participating communities have experienced Category 1 RSI Events. Category 1 events have snowfall of 0-2". Previous events are described in section 17.2.1.

17.2 HAZARD PROFILE

17.2.1 Past Events

The National Climatic Data C enter lists 8 winter weather events that impacted Lee County and the participating communities between 1996 and 2014. These events and estimated damage costs are outlined in Table 17-2. The ice storm on January 12, 1997 lead to over 1,100 traffic accidents, which resulted in 3 deaths. Lee C ounty and the participating c ommunities do not experience severe winter weather events consistently, but winter storms can affect HMP update area. There have not been any category 5 (SPIA Index) Ice events in Lee County. Weather events for the Burnet County and participating communities have been in t he 0 -2, with a n occasional 3 S PIA Index event. S PIA Index events of 0 -2 can expect i ce accumulation up to 1.0" and less than 35mph. SPIA Index 3 events can expect ice <=1", winds greater than 35m ph and significant o utages. F or snowfall, h istorically, L ee C ounty a nd a ll pa rticipating communities were experience snowfall events of the in RSI Category 1. RSI Category 1 events include snowfall of <2". Future events can be expected to follow historical patterns and fall under the RSI Category 1 and SPIA index 0-2 (with some 3's) for all participating communities.

Since the winter events for Lee County and participating communities occur on a zonal and regional scale, the winter events can be applied to all participating communities. The most damaging events from the Historic Winter Weather Events Table are described below. Future events' strength and magnitude (for

both ice, wind, and snowfall) are expected to be similar to previous events as listed below. Storm SPIA and RSI scores for significant events are listed in the Event Descriptions (when applicable).

Event Descriptions

Lee County and Participating Communities – The participating communities had 8 significant events from 1996 to 2014. The most significant events are described below. Since the winter events for Lee County and participating communities occur on a zonal and regional scale, the winter events can be applied to all participating communities.

- On February 1, 1996 a winter storm developed early in the morning and continued until well into the afternoon. Rain began falling just before midnight on Wednesday, January 31st, and changed to sleet across the Texas Hill Country just before 2 am CST. as the event spread eastward into the Austin and San Antonio metropolitan areas, the sleet formed sheets of ice over bridges and roadways. In addition, snow began to fall over the Hill Country and Austin areas near noon on the 1st. This event was described as one of the worst in the past ten years by the Austin Office of Emergency Management. Nearly 1000 vehicle accidents were reported in Austin with nearly 700 in San Antonio. Students were released early at most schools and universities in the area. Road closures were widespread across the Hill Country, Austin, San Marcos, New Braunfels, San Antonio, and all points in-between (Including Lee County). Because of the cold temperatures in the teens and twenties that followed the winter event, many roads and highways remained closed through the evening of the 1st (SPIA Index 3). Property damages of \$59,100 and crop damages of \$1,970 were reported for Lee County.
- On December 12, 2000 bitterly cold arctic winds swept down on South Central Texas during the morning and early afternoon of December 12th. Temperatures that had warmed in many locations to the 70s plunged rapidly into the 40s and 50s shortly after the front's arrival. Northerly winds gusting to 30 and 35 mph further emphasized this dramatic temperature change. By midafternoon, temperatures over the Texas Hill Country had fallen below the freezing mark and light rain and drizzle had begun to change into freezing rain and freezing drizzle. By the late afternoon, a thin layer of ice was reported over Hill Country bridges, overpasses and elevated highways. The wintery precipitation mix continued through the night and early the next morning, requiring the cancellation of several flights at local airports. The layer of icing also forced the closing of numerous bridges and overpasses across Lee County. Late on the evening of the 12th, counties began to report widespread ice forming on roadways. By 4 pm (December 13) that afternoon the last of the warnings and advisories were lifted. Storm damage generally consisted of accidents on slick roads and trees and tree limbs toppling over on power lines. Motorists were unable to travel safely over the glassy streets and roads. As the heavy weight of the ice collapsed both trees and tree limbs, power outages became widespread. Over 100,000 homes were without power in the Central Texas area. Power was restored within 36 hours. (SPIA Index 3)
- On November 28, 2001 very frigid arctic air moved southward into South Central Texas on the morning of November 28th, as an upper level disturbance approached from the west. The disturbance began to produce widespread rain and showers that became a combination of sleet and snow as it fell through the cold near-surface air. All counties along and north of a line from Eagle Pass to Uvalde to San Antonio to Lockhart and Giddings received a mixture of the sleet and snow. Ice was reported up to an inch thick over the 27-county wintery precipitation area (including Lee County) and hundreds of automobile accidents were reported. Most county and rural roads in the area were made dangerous or unpassable for at least a few late night and early morning hours. The precipitation began to diminish from the west shortly after midnight and by

sunrise had generally ended across South Central Texas. Power outages were reported across the 27-county area. Snow accumulations were less than 1" in the Lee County area (SPIA Index 2).

- On January 15, 2007 light freezing rain and freezing drizzle began falling near noon on January 15. Officials received reports of ice on roads and bridges by afternoon and by evening were beginning to close roads countywide. Schools and businesses closed early on January 15 and remained closed the following day (SPIA Level 1). Property damages of \$38,813 were reported.
- On February 3, 2011 an upper level storm approached the area the evening of February 3rd and produced light freezing drizzle which quickly formed a thin layer of ice on all exposed surfaces, making travel very dangerous. The precipitation later turned mostly to light snow along with a few reports of sleet. The greatest snow amounts were from 1 to 2 inches, mainly across portions of Travis and Williamson Counties with generally less than one inch, across the Hill Country, portions of San Antonio, and areas east of I-35. There were over 500 traffic accidents reported in San Antonio and Austin during the overnight hours as well as others in most of the other counties. Many other highways were closed across the area including parts of I-10, US Hwy 90, US Hwy 77, and US Hwy 290. Most area schools were closed February 4th. Ice accumulations of less than 1[']/₄" and snow accumulation of less than 1" were reported for the Lee County area as well. (SPIA Index 2, RSI Category 1).

TABLE 17-2.HISTORIC WINTER WEATHER EVENTS IN LEE COUNTY AND PARTICIPATING COMMUNITIES
(1996-2014)

			Estimated D			
Location	Date	Event Type	Property	Crops	Injuries	Deaths
Lee (Zone)	02/01/1996	Winter Storm	\$59,100	\$1,970	0	0
Lee (Zone)	12/12/2000	Winter Storm	\$0	\$0	0	0
Lee (Zone)	11/28/2001	Winter Storm	\$0	\$0	0	0
Lee (Zone)	02/25/2003	Winter Storm	\$0	\$0	0	0
Lee (Zone)	12/07/2005	Winter Storm	\$0	\$0	0	0
Lee (Zone)	01/15/2007	Winter Storm	\$38,813	\$0	0	0
Lee (Zone)	02/03/2011	Winter Storm	\$0	\$0	0	0
Lee (Zone)	02/09/2011	Winter Weather	\$0	\$0	0	0

17.2.2 Location

Lee County and the participating communities are susceptible to severe winter storms; although severe winter we eather or bl izzard c onditions a re pr imarily in the form of freezing r ain, sleet, or i ce. I ce accumulation becomes a hazard by creating dangerous travel conditions. U.S. Highways 77 and 290, and State Highway 21 are important corridors to move people, supplies, and equipment into the region and to reach medical facilities outside of the county. An accident on these roads can cause a major disruption in the flow of goods and services to the area.

The record low temperatures for Texas occur during October through March. According to data recorded by NWS between 1897 and 2014, the planning area experiences an average of 10 freezing days per year.

The average first freeze in the HMP update area usually occurs in late November and the last freeze occurs in mid-February to early March. In 1989, L ee County and the participating communities experienced a record low temperature of 2°F. Figure 6-4 shows the annual average minimum temperature distribution in Texas.

17.2.3 Frequency

Table 17-2 lists 8 winter storms from 1996 to 2014. Therefore, on a verage a winter storm occurs in the County and participating communities once every 2 years. In this region, the first autumn freeze ordinarily occurs in mid-December, and the last freeze in spring takes place in mid-February. There is an average of 25 to 30 days of freezes in south Texas. Since winter events are usually zonal events and affect a large area, each participating community has the same frequency and probability of future events (once every 2 years). Future events can be expected to be similar to previous events, as listed in Table 17-2 and described in 17.2.1 and Table 17-1 for each participating community

17.2.4 Severity

The magnitude and severity of severe winter weather in Lee County and the participating communities are low, resulting in minor injuries and illnesses; minimal property damage that does not severely threaten structural stability; or interruption of essential facilities and services for less than 48 hours.

17.2.5 Warning Time

Meteorologists can often predict the likelihood of a severe winter storm. When forecasts are available, they can give several days of warning time. However, meteorologists cannot predict the exact time of onset or severity of the storm. Some storms may come on more quickly and have only a few hours of warning time.

17.3 SECONDARY HAZARDS

The most significant secondary hazards associated with severe local storms are falling and downed trees, landslides, and downed power lines. Heavy rain and icy conditions can overwhelm both natural and manmade drainage systems, causing ov erflow and property destruction. Landslides occur when the soil on slopes becomes oversaturated and fails. Additionally, the storms may result in closed highways and blocked roads. It is not unusual for motorists and residents to become stranded. Annually, icy conditions and frozen pipes cause damage to residences and businesses. Late season winter events will typically cause some plant and crop damage.

17.4 CLIMATE CHANGE IMPACTS

Climate change presents a significant challenge for risk management associated with severe weather. The frequency of severe weather events has increased steadily over the last century. Nationally, the number of weather-related disasters during the 1990s was four times that of the 1950s, and cost 14 times as much in economic losses. Historical data shows that the probability for severe weather events increases in a warmer climate (see Figure 14-12). The changing hydrograph caused by climate change could have a significant impact on the intensity, duration and frequency of storm events. All of these impacts could have significant economic consequences.

17.5 EXPOSURE

Because winter weather cannot be directly modeled in HAZUS, annualized losses were estimated using GIS-based analysis, historical data analysis, and statistical risk assessment methodology. Event frequency, severity indicators, expert opinions, and historical knowledge of the region were used for this assessment. The primary data source was the updated HAZUS inventory data (updated with 2010 U.S. Census data and 2014 RS Means S quare F oot C osts) augmented with state and federal data sets as well as the NOAA National Climatic Data Center Storm Event Database.

17.5.1 Population

It can be assumed that the entire planning area is exposed to severe winter weather events to some extent. Certain areas are more exposed due to geographic location and local weather patterns.

17.5.2 Property

According to the HAZUS 2.2 inventory data (updated with 2010 U.S. Census data and 2014 RS Means Square Foot Costs), there are 7,161 buildings in the HMP update area (residential, commercial, and other) with an asset replaceable value of \$1.6 billion (excluding contents).

The vast majority of these buildings are within the participating communities and the unincorporated area. About 98% of these buildings (and 82% of the building value) are associated with residential housing.

Other types of buildings in this report include a gricultural, e ducational, religious, and g overnmental structures.

See hazard loss tables for community-specific total assessed numbers (for e.g. Table 17-5).

Table 17-3 lists the exposed structures and population for the participating communities.

Residents within a city or municipality are governed by building codes and ordinances. Buildings and land in unincorporated areas of the county are not governed by building codes. Because of the less stringent regulations, all of these buildings are considered to be exposed to severe winter weather, but structures in poor condition or in particularly vulnerable locations (located on hilltops or exposed open areas) may risk the most damage. The frequency and degree of damage to a building will depend on specific locations.

TABLE 17-3. EXPOSED STRUCTURES AND POPULATION							
, Jurisdiction Residential Commercial Other * Total Structures Po							
City of Giddings	1,590	62	22	1,674	1,473		
City of Lexington	524	8	1	533	336		
Unincorporated Area	4,921	16	17	4,954	2,536		
Planning Area Total	7,035	86	40	7,161	4,345		

17.5.3 Critical Facilities and Infrastructure

All critical facilities are likely exposed to winter weather events. The most common problems associated with this hazard are utility losses. Downed power lines can cause blackouts, leaving large areas isolated. Phone, water, and sewer systems may not function. Roads may become impassable due to ice or snow. Ice accumulation on roadways can create dangerous driving conditions. There are several county roads that are available to move people and supplies throughout the region.

17.5.4 Environment

The environment is highly exposed to severe weather events. Natural habitats such as streams and trees risk major damage and destruction. Flooding events caused by snowmelt can produce river channel migration or damage riparian habitat.

17.6 VULNERABILITY

Although winter storm is a slow onset hazard with generally six to twelve hours of warning time, utility disruptions from winter storms can severely impact the delivery of services. Water pipes can freeze and crack in sub-freezing temperatures. Ice can build up on power lines and cause them to break under the weight or ice on trees can cause tree limbs to fall on the lines. These events can disrupt electric service for long periods.

Economic impact may be felt by increased consumption of heating fuel which can lead to energy shortages and hi gher prices. House fires and resulting deaths tend to oc cur more frequently from increased and improper use of alternate heating sources. Fires during winter storms also present a greater danger because water supplies may freeze and impede firefighting efforts.

All populations, buildings, critical facilities, and infrastructure in the planning area are vulnerable to severe winter events. People and animals are subject to health risks from extended exposure to cold air. Elderly people and economically disadvantaged populations in the planning area are at greater risk of death from hypothermia during these events. According to the U.S. Center for Disease Control, every year hypothermia kills about 600 Americans, half of whom are 65 years of age or older.

17.6.1 Population

Vulnerable populations are the elderly, low income, linguistically isolated populations, people with lifethreatening illnesses, and residents living in areas that are isolated from major roads. Power outages can be life threatening to those dependent on electricity for life support. Isolation of these populations is a significant concern. These populations face isolation and exposure during severe winter weather events and could suffer more secondary effects of the hazard. Commuters who are caught in storms may be particularly vulnerable. S tranded c ommuters m ay be v ulnerable t o c arbon m onoxide poi soning o r hy pothermia. Additionally, individuals engaged in outdoor recreation during a severe winter event may be difficult to locate and rescue. Table 17-4 contains more specific jurisdictional information.

TABLE 17-4. WINTER WEATHER – MOST AFFECTED POPULATION								
Jurisdiction	Youth Population (< 16)	% of Total Population	Elderly Population (> 65)	% of Total Population	Economically Disadvantage (Income < \$20,000)	% of Total Population		
City of Giddings	1,473	30.18	706	14.46	366	7.50		
City of Lexington	336	28.55	167	14.19	74	6.29		
Unincorporated Area	2,536	24.03	1,749	16.57	641	6.07		
Planning Area Total	4,345	26.16	2,622	15.78	1,081	6.51		

17.6.2 Property

All property is vulnerable during severe winter weather events, but properties in poor c ondition or in particularly vulnerable locations may risk the most damage. Those that are located under or near overhead lines or near large trees may be vulnerable to falling ice or may be damaged in the event of a collapse.

Loss estimations for severe winter weather are not based on damage functions, because no such damage functions have been generated. Instead, loss estimates were developed representing projected damages (annualized loss) on historical events, statistical analysis, and probability factors. These were applied to the participating communities r eported event d amages and ex posed v alues t o cr eate a n an nualized loss. Annualized losses of 'negligible' are less than \$50 annually. The annualized loss estimated for winter storm events is shown in Table 17-5.

TABLE 17-5. LOSS ESTIMATES FOR WINTER STORM EVENTS							
JurisdictionExposed Value (\$)Annualized Loss (\$)Annualized Loss Percentage (%)							
City of Giddings	\$871,346,709	Negligible	Negligible				
City of Lexington	\$177,669,507	Negligible	Negligible				
Unincorporated Area	\$1,645,914,085	\$20,364	<0.01				
Planning Area Total	\$2,694,930,301	\$20,364	<0.01				

Vulnerability Narrative

Each community's vulnerability to winter weather events are described below.

- **City of Giddings** The City of Giddings is at a greater risk of rolling blackouts during a winter weather event due to high usage. This can expose the elderly and economically disadvantaged residents to prolonged periods of cold without he ating and high utility bills. Roads be come dangerous to travel on because of icy conditions. This can lead to schools and businesses being shut down for a day or two. Residents without television or radios may be unaware of emergency broadcasts without an emergency notification system such as Reverse 911.
- **Town of Lexington** The Town of Lexington is at a greater risk of rolling blackouts during a winter w eather e vent due t o hi gh us age. T his can e xpose the e lderly a nd e conomically disadvantaged residents to prolonged periods of cold without heating and high utility bills. Roads become dangerous to travel on because of icy conditions. This can lead to schools and business being s hut dow n f or a day or t wo. C ommunity members w ho do not k now the e ffects of hypothermia and other cold weather hazards are more vulnerable.
- Lee County (Unincorporated Area)- Lee County Unincorporated Areas are at a greater risk of rolling blackouts during a winter weather event due to high usage from other areas of the electrical grid. Due to the rural nature of Lee County's Unincorporated Areas, response times restoring outages caused by a black out could be lengthy. This would expose the entire population to prolonged periods of cold without heating. Also, this would have a greater effect on the young, elderly, and economically disadvantaged that may not have the means to respond to such an event.

Community Perception of Vulnerability

See front page of current chapter for a summary of ha zard rankings for Lee County and participating communities in this HMP update. Chapter 18 gives a detailed description of these rankings and Chapter 19 addresses mitigations actions for this hazard vulnerability.

17.6.3 Critical Facilities and Infrastructure

Incapacity and loss of roads are the primary transportation failures resulting from winter weather, mostly associated with secondary hazards. Snowstorms can significantly impact the transportation system and the availability of public safety services. Of particular concern are roads providing access to isolated areas and to the elderly. Prolonged obstruction of major routes can disrupt the shipment of goods and other commerce. Large, prolonged storms can have negative economic impacts for an entire region.

Severe w indstorms, d owned t rees, an d i ce c an c reate serious i mpacts o n power and ab ove-ground communication lines. Freezing of power and communication lines c an c ause them to break, disrupting electricity and communication. Loss of electricity and phone connection would leave certain populations isolated because residents would be unable to call for assistance.

17.6.4 Environment

The vulnerability of the environment to winter weather is the same as the exposure, discussed in Section 17.5.4.

17.7 FUTURE TRENDS IN DEVELOPMENT

All future development will be affected by winter storms. The vulnerability of community assets to severe winter storms is increasing through time as more people enter the planning area. The ability to withstand impacts lies in so und land use practices and consistent enforcement of c odes and r egulations for new construction. The planning partners have adopted the International Building Code. This code is equipped to deal with the impacts of severe weather events. Land use policies identified in general plans within the planning area also address many of the secondary impacts (flood and landslide) of the severe weather hazard. W ith these tools, the planning partnership is well equipped to deal with future growth and the associated impacts of severe weather.

17.8 SCENARIO

Although sev ere l ocal st orms ar e i nfrequent, i mpacts can b e si gnificant, p articularly when secondary hazards, such as flood or erosion occur. A worst-case event would involve prolonged high winds during a winter storm accompanied by thunderstorms. Such an event would have both short-term and longer-term effects. Initially, schools and roads would be closed due to power outages caused by high winds and downed tree o bstructions. In more r ural a reas, s ome s ubdivisions could experience l imited ingress and e gress. Prolonged rain could produce flooding, overtopped culverts with ponded water on roads, and erosion on steep slopes. Flooding and landslides could further obstruct roads and bridges, further isolating residents.

17.9 ISSUES

Important issues associated with a winter storm in the planning area include the following:

- Older building stock in the planning area is built to low code standards or none at all. These structures could be highly vulnerable to winter weather, particularly freezing temperatures, high winds, and ice.
- Redundancy of power supply must be evaluated.
- The capacity for backup power generation is limited.
- Future efforts should be made to identify populations at risk and determine special needs during winter storm event.

CHAPTER 18. PLANNING AREA RISK RANKING

A risk ranking was performed for the hazards of concern described in this plan. This risk ranking assesses the probability of each hazard's occurrence as well as its likely impact on the people, property, and economy of the planning area. The risk ranking was conducted by the Steering Committee based on the hazard risk assessment p resented d uring t he s econd S teering C ommittee m eeting, co mmunity su rvey r esults, and personal and professional experience with hazards in the planning area. Estimates of risk were generated with data from HAZUS-MH using methodologies promoted by FEMA. The results are used in establishing mitigation priorities.

18.1 PROBABILITY OF OCCURRENCE

The probability of occurrence of a hazard is indicated by a probability factor based on likelihood of annual occurrence:

- High Hazard event is likely to occur within 25 years (Probability Factor = 3)
- Medium Hazard event is likely to occur within 100 years (Probability Factor = 2)
- Low Hazard event is not likely to occur within 100 years (Probability Factor = 1)
- No exposure There is no probability of occurrence (Probability Factor = 0)

The assessment of hazard frequency is generally based on past hazard events in the planning area. The Steering Committee assigned the probabilities of occurrence for each hazard, as shown on Table 18-1.

TABLE 18-1. HAZARD PROBABILITY OF OCCURRENCE								
Lee County City of Giddings City of Lexington								
Hazard	High/Med /Low/No	Probability Factor	High/Med /Low/No	Probability Factor	High/Med /Low/No	Probability Factor		
Dam/Levee Failure	L	1	L	1	L	1		
Drought	Н	3	М	2	М	2		
Earthquake	L	1	L	1	L	1		
Expansive Soils	L	1	L	1	L	1		
Extreme Heat	Н	3	Н	3	Н	3		
Flood	М	2	М	2	М	2		
Hail	Н	3	Н	3	Н	3		
Hurricane/ Tropical Storm	М	2	М	2	L	1		
Lightning	Н	3	Н	3	Н	3		
Tornado	М	2	М	2	М	2		
Wildfire	М	2	М	2	М	2		
Wind	М	2	Н	3	L	1		
Winter Weather	Н	3	Н	3	М	2		

18.2 IMPACT

Hazard impacts were assessed in three categories, impacts on: people, property, and the local economy. Numerical impact factors were assigned as follows:

- **People** Values were assigned based on the percentage of the total *population exposed* to the hazard e vent. The degree of i mpact on individuals will v ary and is not measurable, so the calculation assumes for simplicity and consistency that all people who live in a hazard zone will be equally impacted when a hazard event o ccurs. It should be noted that planners can u se an element of subjectivity when assigning values for impacts on people. Impact factors were assigned as follows:
 - High -50% or more of the population is exposed to a hazard (Impact Factor = 3)
 - Medium -25% to 49% of the population is exposed to a hazard (Impact Factor = 2)
 - Low -24% or less of the population is exposed to the hazard (Impact Factor = 1)
 - No impact None of the population is exposed to a hazard (Impact Factor = 0)
- **Property** Values were assigned based on the percentage of the total *assessed property value* exposed to the hazard event:
 - High 30% or more of the total assessed property value is exposed to a hazard (Impact Factor = 3)
 - Medium 15% to 29% of the total assessed property value is exposed to a hazard (Impact Factor = 2)
 - Low 14% or less of the total assessed property value is exposed to the hazard (Impact Factor = 1)
 - No impact None of the total assessed property value is exposed to a hazard (Impact Factor = 0)
- **Economy** Values were assigned based on total impact to the economy from the hazard event and activities conducted after the event to restore the community to previous functions. Values were assigned based on the number of days the hazard impacts the community, including impacts on tourism, businesses, road closures, or government response agencies.
 - High Community impacted for more than 7 days (Impact Factor = 3)
 - Medium Community impacted for 1 to 7 days (Impact Factor = 2)
 - Low Community impacted for less than 1 day (Impact Factor = 1)
 - No impact No community impacts estimated from the hazard event (Impact Factor = 0)

The impacts of each hazard category were assigned a weighting factor to reflect the significance of the impact. These weighting factors are consistent with those typically used for measuring the benefits of hazard mitigation actions: impact on pe ople was given a weighting factor of 3; impact on pr operty was given a weighting factor of 2; and impact on the economy was given a weighting factor of 1. The impacts for each hazard are summarized in Table 18-2 through Table 18-4. The total impact factor shown on the tables equals the impact factor multiplied by the weighting factor.

TABLE 18-2. IMPACT ON PEOPLE FROM HAZARDS								
	Lee Co	Lee County City of Giddings City of Lexing						
Hazard	High/Med /Low/No	Total Impact Factor	High/Med /Low/No	Total Impact Factor	High/Med /Low/No	Total Impact Factor		
Dam/Levee Failure	L	3	L	3	L	3		
Drought	М	6	М	6	М	6		
Earthquake	L	3	Н	9	L	3		
Expansive Soils	L	3	L	3	L	3		
Extreme Heat	Н	9	М	6	Н	9		
Flood	Н	9	М	6	L	3		
Hail	Н	9	М	6	М	6		
Hurricane/ Tropical Storm	Н	9	М	6	L	3		
Lightning	Н	9	М	6	М	6		
Tornado	Н	9	Н	9	М	6		
Wildfire	Н	9	М	6	М	6		
Wind	Н	9	М	6	L	3		
Winter Weather	Н	9	Н	9	М	6		

IM			18-3. TY FROM H	AZARDS		
	Lee Co	ounty	City of G	iddings	City of Le	xington
Hazard	High/Med /Low/No	Total Impact Factor	High/Med /Low/No	Total Impact Factor	High/Med /Low/No	Total Impact Factor
Dam/Levee Failure	L	2	L	2	L	2
Drought	Н	6	М	4	Н	6
Earthquake	М	4	Н	6	L	2
Expansive Soils	L	2	М	4	L	2
Extreme Heat	Н	6	М	4	Н	6
Flood	М	4	Н	6	М	4
Hail	М	4	Н	6	Н	6
Hurricane/ Tropical Storm	М	4	Н	6	М	4
Lightning	L	2	Н	6	Н	6
Tornado	Н	6	Н	6	Н	6
Wildfire	М	4	Н	6	Н	6
Wind	L	2	М	4	L	2
Winter Weather	М	4	Н	6	М	4

IN	TABLE 18-4. IMPACT ON ECONOMY FROM HAZARDS												
	Lee Co	Lee County City of Giddings City of Lex											
Hazard	High/Med /Low/No	Total Impact Factor	High/Med /Low/No	Total Impact Factor	High/Med /Low/No	Total Impact Factor							
Dam/Levee Failure	L	1	L	1	L	1							
Drought	М	2	М	2	Н	3							
Earthquake	Н	3	Н	3	L	1							
Expansive Soils	L	1	L	1	L	1							
Extreme Heat	М	2	М	2	М	2							
Flood	Н	3	М	2	L	1							
Hail	М	2	Н	3	М	2							
Hurricane/ Tropical Storm	Н	3	Н	3	L	1							

IN	TABLE 18-4. IMPACT ON ECONOMY FROM HAZARDS											
	Lee Co	ounty	City of G	iddings	City of Le	exington						
Hazard	High/Med /Low/No	Total Impact FactorHigh/Med Impact High/Med Impact FactorTotal 										
Lightning	L	1	М	2	М	2						
Tornado	L	1	Н	3	Н	3						
Wildfire	М	2	Н	3	Н	3						
Wind L 1 M 2 L 1												
Winter Weather	М	2	Н	3	М	2						

18.3 RISK RATING AND RANKING

The risk rating for each hazard was calculated by multiplying the probability factor by the sum of the weighted impact factors for people, property, and operations, as summarized in Table 18-5. Based on these ratings, a priority of high, medium, or low was assigned to each hazard. The hazards ranked as being of highest concern vary by jurisdiction but generally include drought, extreme heat, hail, lightning, and winter weather. Table 18-6 summarizes the hazard risk ranking.

	I	HAZARD		ABLE 18-5 RANKING C		IONS							
	Le	e County		City	of Giddings	5	City	of Lexingtor	ı				
Hazard	Probability Factor	Impact Weighted Sum	Total	Probability Factor	Impact Weighted Sum	Total	Probability Factor	Factor Sum					
Dam/Levee Failure	1	6	6	1	6	6	1	6	6				
Drought	3	14	42	2	12	24	2	15	30				
Earthquake	1	10	10	1	18	18	1	6	6				
Expansive Soils	1	6	6	1	8	8	1	6	6				
Extreme Heat	3	17	51	3	12	36	3	17	51				
Flood	2	16	32	2	14	28	2	8	16				
Hail	3	15	45	3	15	45	3	14	42				
Hurricane/ Tropical Storm	2	16	32	2	15	30	1	8	8				
Lightning	3	12	36	3	14	42	3	14	42				
Tornado	2	16	32	2	18	36	2	15	30				
Wildfire	2	15	30	2	15	30	2	15	30				
Wind	2	12	24	3	12	36	1	6	6				

	TABLE 18-5. HAZARD RISK RANKING CALCULATIONS											
Lee County City of Giddings City of Lexington												
Hazard	Probability Factor	Impact Weighted Sum	untyCity of GiddingsCity of Lexingtonnpact ighted SumProbability FactorImpact Weighted SumProbability FactorImpact Weighted Factor154531854212									
Winter Weather	3	15	45	3	18	54	2	12	24			

Hazard	Im/Levee FailureLowLowLowoughtHighMediumMediumrthquakeLowLowLowpansive SoilsLowLowLowtreme HeatHighMediumHighoodMediumMediumLowiilHighHighHighurricane/ opical Storm ghtningMediumMediumMediumMediumHighHighiilfireMediumMediumMedium					
Dam/Levee Failure	Low	Low	Low			
Drought	High	Medium	Medium			
Earthquake	Low	Low	Low			
Expansive Soils	Low	Low	Low			
Extreme Heat	High	Medium	High			
Flood	Medium	Medium	Low			
Hail	High	High	High			
Hurricane/ Tropical Storm	Medium	Medium	Low			
Lightning	Medium	High	High			
Tornado	Medium	Medium	Medium			
Wildfire	Medium	Medium	Medium			
Wind	Medium	Medium	Low			
Winter Weather	High	High	Medium			

PART 3 MITIGATION AND PLAN MAINTENANCE STRATEGY

CHAPTER 19. AREA-WIDE MITIGATION ACTIONS AND IMPLEMENTATION

The Steering Committee reviewed a menu of hazard mitigation alternatives that present a broad range of alternatives to be considered for use in the planning area, in compliance with Title 44 Code of Federal Regulations (44 CFR) (Section 201.6(c)(3)(ii)). The menu provided a baseline of mitigation alternatives that are backed by a planning process, are consistent with the planning partners' goals and objectives, and are within the capabilities of the partners to implement. The Steering Committee reviewed the full range of actions as well as the county's and the participating cities' abilities to implement the variety of mitigation actions. Hazard mitigation actions recommended in this plan were selected from among the alternatives presented in the menu as well as other projects known to be necessary.

19.1 RECOMMENDED MITIGATION ACTIONS

The planning partners and the Steering Committee identified actions that could be implemented to provide hazard mitigation benefits. Table 19-1 lists the recommended mitigation actions and the hazards addressed by the action. All of the hazards profiled in this plan are addressed by more than one mitigation action.

Table 19-2 provides more details on the mitigation actions, including the mitigation action description, action type, estimated cost, potential funding sources, timeline, and benefit to the community (high, medium or low). Mitigation types used for this categorization are as follows:

- <u>Local Plans and Regulations (LPR)</u> These actions include government authorities, policies, or codes that influence the way land and buildings are being developed and built.
- <u>Structure and Infrastructure Projects (SIP) T</u>hese actions involve modifying existing structures and infrastructure to protect them from a hazard or remove them from a hazard area. This could apply to public or private structures as well as critical facilities and infrastructure. This type of action also involves projects to construct manmade structures to reduce the impact of hazards.
- <u>Natural Systems Protection (NSP)</u> These are actions that minimize damage and losses, and also preserve or restore the functions of natural systems.
- <u>Education and Awareness Programs (EAP)</u> These are actions to inform and educate citizens, elected officials, and property owners about hazards and potential ways to mitigate them. These initiatives may also include participation in national programs, such as StormReady and Firewise Communities.

Mitigation action worksheets were developed to provide more information for each recommended mitigation action, in cluding the s pecific p roblem b eing mitigated, a lternative a ctions considered, whether t he a ction applies to e xisting or future development, the benefits or losses avoided, the department, position, office or a gency responsible for implementing the action, the local planning mechanism, and potential funding sources. These worksheets were developed to provide a tool for the planning partners to apply for grants or general funds to complete the mitigation action. An example worksheet for Lee County and the participating cities is shown in Figure 19-1. These worksheets are kept on file with the county and cities, and can be a valuable resource for annual progress updates and reports.

Mitigation Action Worksheet

Please complete one worksheet per action with as much detail as possible, using the instructions beginning on page 3 and examples provided by FEMA.

Name of Jurisdiction:

Mitigation Action #:

Mitigation Action Title:

	Assessing the Risk							
	□ All Hazards □ Coastal Erosion □ Dam/Levee Failure □ Drought □ Earthquake □ Expansive Soils □ Extreme Heat □ Flood □ Hail □ Hurricanes/Tropical Storms							
Hazard(s) addressed: (check all that apply)	□ Land Subsidence □ Lightning □ Thunderstorm □ Tornado □ Wildfire □ Wind							
(cucck an that apply)	Winter Weather							
Specific problem being								
Mitigated (describe why action								
is needed)								
	Evaluation of Potential Alternatives							
Alternatives Considered (name	1.							
of project and reason for not	2.							
selecting)	3.							
	Action/Project Intended for Implementation							
	Action/Project intended for implementation							
Describe how action will be implemented (main steps involved)								
1. 1. m. 1. 1. m.	□ Local Plans and Regulations □ Structure and Infrastructure Project							
Action/Project Type	□Natural Systems Protection □Education and Awareness Programs							
Applicable Goals/Objectives □Goal #1 □Goal #2 □Goal #3 □Goal #4 □Goal #5 □Goal #6 (refer to list of goals/objectives) Objective: □ <t< th=""></t<>								
(refer to list of goals/objectives)								
Applies to existing or future development	Existing Development Development Both Existing and Future Development Not Applicable							
	□ Life Safety □Damage Reduction □Other							
Describe benefits (losses avoided)	Describe:							
	□<\$10,000; □\$10,000 to \$100,000; □>\$100,000							
Estimated Cost	Other Amount: \$							
	Plan for Implementation							
Responsible Department								
	Capital Improvement Plan Comprehensive Plan Building Code Ordinance							
Local Planning Mechanism (check all that apply)	□ Other: New Local Plan							
(спеск ан шаг арргу)								
Potential Funding Sources	General Fund							
Timeline for Completion	months							
	Reporting on Progress							
	□ Not Started □In-progress □Delayed □Completed □No Longer Required							
Status/Comment	Comment:							
	- VALMANNANI							
Completed by:								
(name, title, phone #)	Date:							
,, F								

1

Figure 19-1. Blank Mitigation Action Worksheet

19.2 BENEFIT/COST REVIEW AND PRIORITIZATION

The action plan must be prioritized according to a benefit/cost analysis of the proposed projects and their associated costs (44 CFR, Section 201.6(c)(3)(iii)). The benefits of proposed projects were weighed against estimated costs as part of the project prioritization process. The benefit/cost analysis was not of the detailed variety required by FEMA for project grant eligibility under the Hazard Mitigation Grant Program (HMGP) and Pre-Disaster Mitigation (PDM) Grant Program. A less formal approach was used because some projects may not be implemented for up to 10 years, and associated costs and benefits could change dramatically in that t ime. Therefore, a review of t he apparent b enefits v ersus t he apparent c ost o f eac h p roject w as performed. Parameters were established for assigning subjective ratings (high, medium, and low) to the costs and benefits of these projects.

Fourteen criteria were used to as sist in evaluating and prioritizing the mitigation initiatives. For each mitigation action, a numeric rank (0, 1, 2, 3, 4) was assigned for each of the 14 evaluation criteria defined as follows:

- Definitely Yes 4
- Maybe Yes 3
- Unknown/Neutral 2
- Probably No 1
- Definitely No 0

The 14 evaluation/prioritization criteria are:

- 1. Life Safety How effective will the action be at protecting lives and preventing injuries? The numeric rank for this criterion is multiplied by 2 to emphasize the importance of life safety when evaluating the benefit of the action.
- 2. Property Protection How significant will the action be at eliminating or reducing damage to structures and infrastructure? The numeric rank for this criterion is multiplied by 2 to emphasize the importance of property protection when evaluating the benefit of the action.
- 3. Cost-Effectiveness Will the future benefits achieved by implementing the action, exceed the cost to implement the action?
- 4. Technical Is the mitigation action technically feasible? Will it solve the problem independently and is it a long-term solution? Eliminate actions that, from a technical standpoint, will not meet the goals.
- 5. Political Is there overall public support for the mitigation action? Is there the political will to support it?
- 6. Legal Does the jurisdiction have the authority to implement the action?
- 7. Fiscal Can the project be funded under existing program budgets (i.e., is this action currently budgeted for)? Or would it require a new budget authorization or funding from another source such as grants?
- 8. Environmental What are the potential environmental impacts of the action? Will it comply with environmental regulations?
- 9. Social Will the proposed action adversely affect one segment of the population? Will the action disrupt established neighborhoods, break up v oting districts, or cause the relocation of lower income people?

- 10. Administrative Does the jurisdiction have the personnel and administrative c apabilities to implement the action and maintain it or will outside help be necessary?
- 11. Multi-hazard Does the action reduce the risk to multiple hazards?
- 12. Timeline Can the action be completed in less than 5 years (within our planning horizon)?
- 13. Local Champion Is there a strong advocate for the action or project among the jurisdiction's staff, governing body, or committees that will support the action's implementation?
- 14. Other L ocal O bjectives Does the a ction a dvance of her local objectives, s uch a s c apital improvements, economic development, environmental quality, or open space preservation? Does it support the policies of other plans and programs?

The numeric results of this exercise are shown on the mitigation action worksheets. An example worksheet for is shown in Figure 19-2. These results were used to identify the benefit of the action to the community as low, medium, or high priority. Table 19-2 shows the benefit of each mitigation action.

The Steering Committee used the results of the benefit/cost review and prioritization exercise to rank the mitigation actions in order of priority, with 1 being the highest priority. The highest priority mitigation actions are shown in red on Table 19-2, medium priority actions are shown in yellow and low priority actions are shown in green.

Pri	oritizat	ion Wor	ksheet
Mitigation Action #:	_		
Criteria	Numeric F Definitely M Maybe Yes Unknown// Probably N Definitely M	Ves = 4 = 3 Neutral = 2 o = 1	Provide brief rationale for numeric rank when appropriate
1. Will the action result in <u>Life Safety</u> ?		x 2=	
2. Will the action result in <u>Property</u> <u>Protection</u> ?		x 2 =	
3. Will the action be <u>Cost-Effective</u> ? (future benefits exceed cost)			
4. Is the action <u>Technically</u> feasible			
5. Is the action <u>Politically</u> acceptable?			
6. Does the jurisdiction have the <u>Legal</u> authority to implement?			
7. Is <u>Funding</u> available for the action?			
8. Will the action have a positive impact on the natural <u>Environment</u> ?			
9. Is the action <u>Socially</u> acceptable?			
10. Does the jurisdiction have the <u>Administrative</u> capability to execute the action?			
11. Will the action reduce risk to more than one hazard (<u>Multi-Hazard</u>)?			
12. Can the action be implemented <u>Quicklv</u> ?			
13. Is there an Agency/Department <u>Champion</u> for the action?			
14. Will the action meet other <u>Community</u> <u>Objectives</u> ?			
Total			
Priority: Low = <35 Medium = 35-49 High = >50	□Low □Medium □High		

Figure 19-2. Example Benefit/Cost Review and Prioritization Worksheet

	MITIGATION ACTIO		LE 19 LOPE		ADDR	RESSI	HAZAI	RDS						
Action No.	Title	Dam/Levee Failure	Drought	Earthquake	Expansive Soil	Extreme Heat	Flood	Hail	Hurricane/ Tropical Storms	Lightning	Tornado	Wildfire	Wind	Winter Weather
LEE CO	UNTY													
1	Purchase NOAA All Hazard Radios	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
2	Use Fire-Resistant Construction Techniques											Х		
3	Improve Household Disaster Preparedness	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	Integrate Mitigation into Local Planning	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5	Improve Flood Risk Assessment						Х							
6	Hazard Education for Homeowners	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
7	Monitor Drought Conditions		Х											
8	Assist Vulnerable Populations During Extreme Temperatures					Х								Х
9	Incorporating Flood Mitigation in Local Planning						Х							
10	Drainage System and Flood Control Structures						Х							
11	Assess Vulnerability to Severe Wind								Х		Х		Х	
12	Use the application of calcium soil stabilizers in road construction				Х									
CITY O	F GIDDINGS													
1	Update Building Codes	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

	MITIGATION ACTIO		LE 19 LOPE		ADDR	ESS I	HAZAI	RDS						
Action No.	Title	Dam/Levee Failure	Drought	Earthquake	Expansive Soil	Extreme Heat	Flood	Hail	Hurricane/ Tropical Storms	Lightning	Tornado	Wildfire	Wind	Winter Weather
2	Purchase NOAA All Hazard Radios	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
3	Water Conservation Measures		Х			Х								
4	Upgrade Underground Water Lines		Х											
5	Outdoor Warning Siren	Х					Х	Х	Х	Х	Х			
6	Hazard Education for Homeowners	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
CITY OI	FLEXINGTON													
1	Monitor Drought Conditions		Х			Х								
2	Incorporating Flood Mitigation in Local Planning						Х							
3	Drainage Systems and Flood Control Structures						Х							
4	Assess Vulnerability to Severe Wind								Х		Х		Х	
5	Purchase NOAA All Hazard Radios	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
6	Hazard Education and Risk Awareness for Homeowners	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
7	Update Building Codes	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Notes: CAPCOG	Capital Area Council of Governments	N/A NOAA			Applicat onal Oce		d Atmo	spheric 1	Administra	tion				

		RECO		BLE 19- MITIGA	2. TION ACTI	ONS				
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
LEE CO	DUNTY									
1	Purchase NOAA All Hazard Radios	Purchase NOAA All Hazard Radios and disperse for residents.	11	SIP	G1	Emergency Management	< \$10,000	Operating Budget, Contingency Fund,	48	Medium
2	Use Fire Resistant Construction Techniques	Use fire resistant and non-combustible materials in remodels, upgrades, and new construction to mitigate wildfires engulfing homes and buildings.	8	NSP	G1, G3, G4, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	36	Low
3	Improve Household Disaster Preparedness	Encouraging property owners to purchase hazard insurance not as an alternative to mitigation, but rather to add financial protection if damage does occur. Encouraging residents to prepare by stocking up the necessary items and planning for how family members should respond during a disaster. Publicized information about household preparedness can be found at www.ready.gov. Providing hazard vulnerability checklists for homeowners to conduct their own inspections.	7	NSP	G3, G4	Emergency Management	\$10,000 to \$100,000	City Funds, Grants	24	Low

		RECO		BLE 19- MITIGA	2. ATION ACTION	ONS				
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
4	Integrate Mitigation into Local Planning	Incorporating risk assessment and hazard mitigation principles into comprehensive planning efforts. Incorporating hazard mitigation into broader growth management (i.e., Smart Growth) initiatives. Incorporating a hazard risk assessment into the local development and subdivision review process.	2	LPR NSP	G2, G4, G5, G6	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	12	High
5	Improve Flood Risk Assessment	Incorporating the procedures for tracking high-water marks following a flood into emergency response plans. Using GIS to map areas that are at risk from flooding. Developing and maintaining a database to track community exposure to flood risk.	5	LPR	G1, G2, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	36	Medium
6	Hazard Education for Homeowners	Develop and implement a multi-hazard public awareness program. Educate homeowners on how to mitigate their homes from these hazards on county website and public forums.	1	EAP	G1, G2, G3, G4, G6	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	24	High
7	Monitor Drought Conditions	Identify drought indicators, such as precipitation, temperature, surface water levels, soil moisture, etc. Establish a regular schedule to monitor and report conditions on at least a monthly basis.	10	LPR	G1, G4, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	60	Low

	TABLE 19-2. RECOMMENDED MITIGATION ACTIONS									
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
8	Assist Vulnerable Population During Extreme Temperatures	Organize outreach to vulnerable populations, including establishing and promoting accessible heating or cooling centers in the community. Create a database to track those individuals at high risk of death, such as the elderly, homeless, and others.	9	LPR EAP	G1, G3, G4	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	48	Low
9	Incorporating Flood Mitigation in Local Planning	Develope a new floodplain management plan. Adopting a post-disaster recovery ordinance.	3	LPR NSP	G1, G2, G4, G5, G6	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	36	Medium
10	Drainage System and Flood Control Structures	Prevent scour to culverts and support bracing underneath low-lying bridges by cleaning debris and inspecting culverts and bridges.	4	LPR SIP NSP	G1, G2	Road and Bridge	>\$100,000	Operating Budget, Contingency Fund, Grant Funding	36	Medium
11	Assess Vulnerability to Severe Wind	Develop a database to track community vulnerability to severe wind. Create a severe wind scenario to estimate potential loss of life and injuries, the types of potential damage, and existing vulnerabilities within the community to develop severe wind mitigation priorities.	6	NSP	G1, G4, G5	Emergency Management	< \$10,000	Operating Budget, Contingency Fund, Grant Funding	48	Medium

			TA	BLE 19-2	•					
		REC	OMMENDED	MITIGA	TION ACTION	IS				
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline In months	Benefit
12	Use the application of calcium soil stabilizers in road construction	cation of m soilEngineer protocol for pavement subgrade work on county roads. This will make a durable permanent roadway layer and minimize damage from expansive soil issues.		SIP	G1	Road and Bridge	<\$10,000	General Budget	24	Medium
13	Upgrade drainage structure on Post Oak Dr. at Unnamed Tributary to Middle Yegua Creek	Replace existing corrugated metal pipe with either larger multiple box culvert structure or a bridge, depending on findings of an H&H study, to prevent overtopping and isolation of the affected population and to reduce damage to the location.	13	SIP	G1. G2, G6	Road and Bridge	>100,000	Operating Budget, Grant Funds	36	High
14	Reroute CR 302 to avoid low water crossing.	Reroute existing roadway to a shorter path that will prevent isolation of the affected population.	14	SIP	G1. G2, G6	Road and Bridge	>100,000	Operating Budget, Grant Funds	36	High
15	Upgrade drainage structure on CR 400 at 30.401982, -96.836636.	Replace existing culverts with larger culverts and raise roadway to prevent overtopping and isolation of affected population and to reduce damage to location.	15	SIP	G1. G2, G6	Road and Bridge	>100,000	Operating Budget, Grant Funds	36	High
16	Upgrade drainage structure on CR 455 at Indian Camp Branch.	Replace existing culverts with larger culverts and raise roadway to prevent overtopping and isolation of affected population and to reduce damage to location.	16	SIP	G1. G2, G6	Road and Bridge	>100,000	Operating Budget, Grant Funds	36	High

			ТА	BLE 19-2						
Action No.	Title	REC Description	COMMENDED Mitigation Action Ranking	Action Type	TION ACTION Applicable Goals	IS Responsible Department	Estimated Cost	Potential Funding Sources	Timeline In months	Benefit
17	numerous flood project locations and determine the prone locations best design plan for each location. within Lee County		17	SIP	G1. G2, G6	Road and Bridge	>100,000	Operating Budget, Grant Funds	36	High
18	Design and implement drainage system improvements to Cummins Creek Watershed Scs Site 1 Dam	Conduct H&H study and a Master Drainage Plan for design improvements to reduce the impact of flooding upstream of the dam.	18	SIP NSP	G1, G2, G3,	Emergency Management	>100,000	Operating Budget, Grant Funds	36	High
19	Improve notifications to residents of high water and road closures.	Purchase high water and road closed signs.	19	LPR EAP	G1, G2, G3, G4, G6	Road and Bridge	>100,000	Operating Budget, Grant Funds	36	High
20	Improve notification of Burn Ban	Purchase Burn Ban signs	20	LPR EAP	G1, G2, G3, G4, G6	OEM	>100,000	Operating Budget, Grant Funds	36	High
21	Upgrade drainage structure on CR 226 at Cummins Creek.	Replace existing bridge with a larger bridge and raise roadway to prevent overtopping and isolation of affected population and to reduce damage to location.	21	SIP	G1, G2, G3,	Road and bridge	<250,000	Operating Budget, Grant Funds	36	High

			TA	BLE 19-2	•					
		REC	OMMENDED	MITIGA	TION ACTION	IS				
Action			Mitigation	Action	Applicable	Responsible	Estimated	Potential	Timeline	
No.	Title	Description	Action	Туре	Goals	Department	Cost Fundi	Funding	In	Benefit
NO.				Ranking	туре	Guais	Department	COST	Sources	months
22	Floodplain	Conduct voluntary buyouts of homes with repetitive loss in floodplain	14	NSP	G1, G2, G3,	Floodplain	<2,000,000	Operating Budget,	36	High
22	property buyouts	buyouts areas of Lee County and turn the land into deed restricted open space.	14	SIP	G4 <i>,</i> G5	Coordinator	<2,000,000	Grant Funds	50	Tign
23	Lee County Courthouse	Improve/repair structural integrity of Lee County Courthouse to mitigate future damages.	13	SIP	G2, G3, G4, G6, 13	Judges Office	<500,000	Operating Budget, Grant Funds	36	High

	TABLE 19-2. RECOMMENDED MITIGATION ACTIONS									
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
CITY O	F GIDDINGS									
1	Update Building Codes	The City currently has the 2009 IBC and will update to the 2012 IBC. Stricter building codes goes to mitigate identified hazards, such as tornado, high wind, and impact resistant materials (windows, doors, roof bracings); dry-proofing public buildings for flooding and dam failure; upgrading to higher standard insulation for extreme heat and winter storms; installing lighting rods and grounding systems on public buildings; retrofitting to low-flow plumbing and replacing landscaping with drought and fire resistant plants; stricter codes for hail and fire resistant roofing and siding; implementing higher standards for foundations, and upgrading requirements for construction beams, brackets and foundations to mitigation impacts of earthquake and expansive soils.	6	LPR	G1, G3, G4, G5	Building Inspections	< \$10,000	City funds	12	High

	TABLE 19-2. RECOMMENDED MITIGATION ACTIONS									
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
2	Purchase NOAA All Hazard Radios	Purchase NOAA All Hazard Radios and disperse for residents.	1	LPR EAP	G1, G3, G4	Emergency Management	< \$10,000	City Funds	12	Medium
3	Water Conservation Measures	The city will research the options of drilling new water wells and/or implementing water restrictions to maintain public water in the city.	2	LPR SIP EAP	G1, G2, G3, G4, G5, G6	Public Works	>\$100,000	Annual Budget and Bonds	24	Medium
4	Upgrade Underground Water Lines	Upgrade underground water lines.	3	LPR SIP EAP	G1, G2, G3, G4, G5	Public Works	>\$100,000	Annual Budget and Bonds	48	Medium
5	Outdoor Warning Siren	Activate outdoor warning sirens for thunderstorms, hail, high winds, and flooding in addition to tornado warnings.	4	LPR EAP	G1, G3	Police Dept.	< \$10,000	Annual Budget	36	High
6	Hazard Education for Homeowners	Educate homeowners on how to mitigate their homes from these hazards. Post educational information on city's website and as stuffers with utility bills.	5	LPR	G1, G3	Emergency Management	\$10,000 to \$100,000	City Funds	36	High

	TABLE 19-2. RECOMMENDED MITIGATION ACTIONS									
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
CITY O	F LEXINGTON									
1	Monitor Drought Conditions	Identify drought indicators, such as precipitation, temperature, surface water levels, soil, moisture, etc. Establish a regular schedule to monitor and report conditions on at least a monthly basis.	6	LPR	G1, G3, G4, G5	Emergency Management	< \$10,000	City Funds, Grants	48	Low
2	Incorporating Flood Mitigation in Local Planning	Developing a floodplain management plan and updating it regularly. Adopting a post- disaster recovery ordinance.	4	LPR NSP	G1, G2, G4, G5, G6	Floodplain Management	< \$10,000	City Funds	24	Medium
3	Drainage Systems and Flood Control Structures	Prevent scour to culverts and support bracing underneath low-lying bridges by cleaning debris and inspecting culverts and bridges.	2	LPR SIP NSP	G1, G2	Public Works	>\$100,000	City Funds, Donations	24	Medium
4	Assess Vulnerability to Severe Wind	Develop a database to track community vulnerability to severe wind. Creating severe wind scenario to estimate potential loss of life and injuries, the types of potential damage, and existing vulnerabilities within the community to develop severe wind mitigation priorities.	5	NSP	G1, G4, G5	Emergency Management	< \$10,000	Grants	48	Medium
5	Purchase NOAA All Hazard Radios	Purchase NOAA All Hazard Radios and disperse for residents.	3	SIP	G1	Emergency Management	< \$10,000	City Funds	24	Medium

		RECO		BLE 19- MITIGA	2. ATION ACTI	ONS				
Action No.	Title	Description	Mitigation Action Ranking	Action Type	Applicable Goals	Responsible Department	Estimated Cost	Potential Funding Sources	Timeline in months	Benefit
6	Hazard Education and Risk Awareness to Homeowners	Educate homeowners on how to mitigate their homes from these hazards. Post educational information on city's website and as stuffers with utility bills.	1	EAP	G1, G2, G3, G4, G6	Emergency Management	< \$10,000	City Funds, Grants	12	High
7			7	LPR	G1, G3, G4, G5	Building Inspections	< \$10,000	City funds	12	High
Notes: CAPCOO EAP GIS IBC	APCOGCapital Area Council of GovernmentsAPEducation and Awareness ProgramsISGeographic Information System		LPR NOAA NSP SIP	Nat Nat	tural Systems P	and Atmospheric		1		

CHAPTER 20. PLAN ADOPTION AND MAINTENANCE

20.1 PLAN ADOPTION

A hazard mitigation plan must document that it has been formally adopted by the governing body of the jurisdiction requesting federal approval of the plan (44 CFR Section 201.6(c)(5)). For multi-jurisdictional plans, each jurisdiction requesting approval must document that is has been formally adopted. All planning partners fully met the participation requirements specified by the Steering Committee and will seek Disaster Mitigation Act of 2000 (DMA) compliance under this plan. The plan will be submitted for review to the Texas Division of E mergency Man agement (TDEM) and then to the F ederal E mergency Man agement Agency (FEMA) Region VI for review and pre-adoption approval. Once pre-adoption approval has been provided, all planning partners will formally adopt the plan. All partners understand that DMA compliance and its benefits cannot be achieved until the plan is adopted. Copies of the resolutions adopting this plan for all planning partners can be found in Appendix F.

20.2 PLAN MAINTENANCE STRATEGY

A hazard mitigation plan must present a plan maintenance process that includes the following (44 CFR Section 201.6(c)(4)):

- A s ection describing t he method a nd s chedule of monitoring, e valuating, a nd upda ting t he mitigation plan over a 5-year cycle
- A process by which local governments incorporate the requirements of the mitigation plan into other pl anning m echanisms, s uch a s c omprehensive or c apital i mprovement pl ans, w hen appropriate
- A discussion on how the community will continue public participation in the plan maintenance process.

This chapter details the formal process that will ensure that the Lee County Hazard Mitigation Plan remains an active and relevant document and that the planning partners maintain their eligibility for applicable funding sources. The plan maintenance process includes a schedule for monitoring and evaluating the plan annually and producing an updated plan every 5 years. This chapter also describes how public participation will be integrated throughout the plan maintenance and implementation process. It also explains how the mitigation s trategies outlined in this plan will be incorporated into existing planning m echanisms and programs, such as comprehensive land-use planning processes, capital improvement planning, and building code enforcement and implementation. The plan's format allows sections to be reviewed and updated when new data become available, resulting in a plan that will remain current and relevant.

20.2.1 Plan Implementation

The effectiveness of the hazard mitigation plan depends on its implementation and incorporation of its action items into partner jurisdictions' existing plans, policies, and programs. Together, the action items in the plan provide a framework for activities that the partnership can implement over the next 5 years. The planning t eam and the S teering C ommittee h ave established g oals and o bjectives and h ave prioritized mitigation actions that will be implemented through existing plans, policies, and programs.

The Lee County Office of Emergency Management will have lead responsibility for overseeing the plan implementation and m aintenance st rategy. Plan implementation and ev aluation w ill b e a s hared responsibility between Lee County, the City of Giddings, and the City of Lexington. The public will be invited to attend meetings regarding the implementation of the plan and feedback will be solicited at the end of the meeting.

20.2.2 Steering Committee

The Steering C ommittee is a total volunteer body that oversaw the development of the plan and made recommendations on k ey elements of the plan, including the maintenance strategy. It was the Steering Committee's position that an implementation committee with representation similar to the initial Steering Committee should have an active role in the plan maintenance strategy. The Steering Committee and the Implementation Committee are one and the same. Therefore, it is recommended that a Steering Committee remain a viable body involved in k ey elements of the plan maintenance strategy. The new Steering Committee should strive to include representation from the planning partners, as well as other stakeholders in the planning a rea. The pub ic will be i nvited to a ttend S teering C ommittee meetings r egarding maintenance of the plan and will be asked for feedback or comments on the maintenance strategy.

The principal role of the new implementation committee in this plan maintenance strategy will be to review the annual progress report and provide input to the Lee County Emergency Management Coordinator on possible enhancements to be considered at the next update. Future plan updates will be overseen by a Steering Committee similar to the one that participated in this plan development process, so keeping an interim Steering Committee intact will provide a head start on future updates. Completion of the progress report is the responsibility of each planning partner, not the responsibility of the Steering Committee. It will simply be the Steering Committee's role to review the progress report in an effort to identify issues needing to be addressed by future plan updates.

With adoption of this plan, the implementation committee will be tasked with plan monitoring, evaluation and m aintenance. The p articipating jurisdictions and a gencies, l ed by t he L ee C ounty E mergency Management Coordinator, agree to:

- Meet annually, and after a disaster event, to monitor and evaluate the implementation of the plan;
- Act as a forum for hazard mitigation issues;
- Disseminate hazard mitigation ideas and activities to all participants;
- Pursue the implementation of high priority, low- or no-cost recommended actions;
- Maintain vigilant monitoring of multi-objective, cost-share, and other funding opportunities to help the community implement the plan's recommended actions for which no current funding exists;
- Monitor and assist in implementation and update of this plan;
- Keep the concept of mitigation in the forefront of community decision making by identifying plan recommendations when other community goals, plans, and activities overlap, influence, or directly affect increased community vulnerability to disasters;
- Report on plan progress and recommended changes to the Lee County Commissioners Court and governing bodies of participating jurisdictions; and
- Inform and solicit input from the public.

The implementation committee is an advisory body and can only make recommendations to county, city, or district elected officials. Its primary duty is to see the plan successfully carried out and to report to the community g overning boa rds a nd t he public on the s tatus of plan i mplementation and m itigation opportunities. O ther duties i nclude r eviewing a nd promoting mitigation proposals, he aring s takeholder concerns a bout h azard m itigation, p assing c oncerns on t o a ppropriate e ntities, a nd pos ting r elevant information in areas accessible to the public.

20.2.3 Plan Maintenance Schedule

The implementation committee will meet annually and after a state or federally declared hazard event as appropriate t o m onitor pr ogress a nd up date t he m itigation strategy. T he L ee C ounty E mergency Management Coordinator will be r esponsible f or i nitiating the p lan r eviews with the implementation committee.

20.2.4 Annual Progress Report

The minimum task of each planning partner will be the evaluation of the progress of its individual action plan during a 12-month performance period. This review will include the following:

- Summary of any hazard events that occurred during the performance period and the impact these events had on the planning area
- Review of mitigation success stories
- Review of continuing public involvement and feedback received from the community
- Brief discussion about why targeted strategies were not completed
- Re-evaluation of the action plan to evaluate whether the timeline for identified projects needs to be amended (such as changing a long-term project to a short-term one because of new funding)
- Recommendations for new projects
- Changes in or potential for new funding options (grant opportunities)
- Impact of any other planning programs or initiatives that involve hazard mitigation
- Monitor the incorporation of the Mitigation Plan into planning mechanisms.

The planning team has created a template to guide the planning partners in preparing a progress report (see Appendix G). The plan maintenance Steering Committee and the public will provide feedback to the planning team on items included in the template. The planning team will then prepare a formal annual report on the progress of the plan. This report should be used to:

- Post on the Lee County Office of E mergency Man agement website dedicated to the h azard mitigation plan
- Provide information for a press release that will be issued to the local media
- Inform planning partner g overning bodi es of the progress of actions i mplemented during the reporting period.

Uses of the progress report will be at the discretion of each planning partner. Annual progress reporting is not a r equirement s pecified unde r 44 CFR. H owever, i t m ay e nhance t he planning partnership's opportunities for funding. While failure to implement this component of the plan maintenance strategy will not jeopardize a planning partner's compliance under the DMA, it may jeopardize its opportunity to partner and leverage funding opportunities with the other partners.

Evaluation of progress can be achieved by monitoring changes in vulnerabilities identified in the plan. Changes in vulnerability can be identified by noting:

- Decreased vulnerability as a result of implementing recommended actions,
- Increased vulnerability as a result of failed or ineffective mitigation actions, and/or
- Increased vulnerability as a result of new development (and/or annexation).

20.2.5 Plan Update

Local hazard mitigation plans must be reviewed, revised if appropriate, and resubmitted for approval in order to remain e ligible for benefits under the DMA (44 CFR, S ection 201.6(d)(3)). The Lee County partnership intends to update the hazard mitigation plan on a 5-year cycle from the date of initial plan adoption. This cycle may be accelerated to less than 5 years based on the following triggers:

- A Presidential Disaster Declaration that impacts the planning area
- A hazard event that causes loss of life
- A comprehensive update of the county or participating city's comprehensive plan

It will not be the intent of future updates to develop a complete new hazard mitigation plan for the planning area. The update will, at a minimum, include the following elements:

- The update process will be convened through a Steering Committee.
- The hazard risk ass essment will be reviewed and, if n ecessary, u pdated u sing b est av ailable information and technologies.
- The action plans will be reviewed and revised to account for any actions completed, dropped, or changed and to account for changes in the risk assessment or new partnership policies identified under other planning mechanisms (such as the comprehensive plan).
- The draft update will be sent to appropriate agencies and organizations for comment.
- The public will be given an opportunity to participate in the update process and comment on the update prior to adoption.
- The partnership governing bodies will adopt their respective portions of the updated plan.

20.2.6 Continuing Public Involvement

The public will continue to be apprised of the plan's progress through the TCRFC and Lee County Office of Emergency Management's websites and other methods as appropriate. This site will not only house the final plan, it will become the one-stop shop for information regarding the plan, the partnership and plan implementation. Copies of the plan will be distributed to the public library system in Lee County Library. Upon initiation of future update processes, a new public involvement strategy will be initiated based on guidance from a new Steering Committee. This strategy will be based on the needs and capabilities of the planning partnership at the time of the update. This strategy will include the use of local media outlets within the planning area to notify the public of the implementation, monitoring, and evaluation of the plan. The public will be invited to participate in each stage by attending meetings and provide feedback to the planning t eam a nd ne w S teering C ommittee. The S teering C ommittee m ay i nclude c ommunity stakeholders, such as prominent businesses, local action groups, etc.

20.2.7 Incorporation into Other Planning Mechanisms

The information on hazard, risk, vulnerability, and mitigation contained in this plan is based on the best science and t echnology available at the time this plan was prepared. The existing Lee County and participating cities regulations, ordinances, and plans (including the Lee County Emergency Operations Plan), and the comprehensive plans of the partner cities are considered to be integral parts of this plan. The county and partner cities, through adoption of comprehensive plans and zoning ordinances, have planned for the impact of natural hazards.

It will be the responsibility of the county and the cities to determine additional implementation procedures when appropriate. This includes integrating the requirements of the hazard mitigation plan into other local planning documents, processes, or mechanisms.

Lee County and the participating municipalities are committed to creating a linkage between the hazard mitigation plan and their individual comprehensive plans. Other planning processes and programs to be coordinated with the recommendations of the hazard mitigation plan include the following:

- Comprehensive plans
- Strategic plans
- Partners' emergency response plans
- Capital improvement programs
- Municipal codes
- Community design guidelines
- Water-efficient landscape design guidelines
- Stormwater management programs
- Water system vulnerability assessments
- Community wildfire protection plans
- Growth management plans
- Ordinances, resolutions, and regulations
- Continuity of operations plans

The previous *TCRFC Multi-Jurisdictional Hazard Mitigation Plan Update 2011-2016* identified mitigation actions for each participating community. These mitigation actions and their current status are listed in Table 2-2. Ongoing or delayed mitigation actions identified in the previous plan were carried forward into new mitigation actions for Lee County, the City of Giddings, or the City of Lexington. The county and the cities did not a ctively track the linkage of the previous 2011 TCRFC plan into other local planning mechanisms. However, the annual progress report discussed in Chapter 20.2.4 and Appendix E will provide a framework for tracking future mitigation actions and the incorporation of this plan into other planning mechanisms.

Opportunities to integrate the requirements of this plan into other local planning mechanisms will continue to be identified through future meetings of the Steering Committee, by the individual communities and the county, and through the annual and five-year review processes as required by FEMA. The primary means for integrating mitigation strategies into other local planning mechanisms will be through the revision, update, a nd i mplementation of e ach jurisdiction's i ndividual plans t hat r equire s pecific planning a nd administrative tasks (for example, plan amendments, ordinance revisions, capital improvement projects, etc.).

The previous Steering Committee representatives will remain charged with ensuring that the goals and strategies of new and updated local planning documents for their jurisdictions or agencies are consistent with the goals and actions of the Lee County Hazard Mitigation Plan Update and will not contribute to increased hazard vulnerability in Lee County, the City of Giddings, or the City of Lexington. During the planning process for new and updated local planning documents, such as a comprehensive plan, capital improvements plan, or emergency management plan, the applicable jurisdiction will provide a copy of the Lee County Hazard Mitigation Plan Update to the appropriate parties and recommend that all goals and strategies of new and updated local planning documents are consistent with and support the goals of the Lee County plan and will not contribute to increased hazards in the affected jurisdiction(s).

Although it is recognized that there are many possible benefits to integrating components of this plan into other local planning mechanisms, the development and maintenance of this stand-alone hazard mitigation plan is deemed by the Steering C ommittee to be the most effective and a ppropriate method to ensure implementation of local hazard mitigation actions at this time. All participating jurisdictions will comply with local and all applicable statutory requirements while incorporating the Lee County Hazard Mitigation Plan Update into existing plans in an effort to mitigate the impact of future disasters. A list of the existing plans and procedures in which mitigation activities will be integrated is listed in Table 20-1.

Specifically, the communities will:

- Lee County The identified actions will be brought forward by the responsible department or entity to the County Commissioners' Court for approval. The Commissioners will approve or deny the actions. All approved actions will be implemented/acted upon.
- City of Giddings The identified actions will be brought forward by the responsible department or entity to the appropriate sub-committee and then on to the City Council for approval. The Council will approve or deny the actions. All approved actions will be implemented/acted upon.
- City of Lexington The identified actions will be brought forward by the responsible department or entity to the appropriate sub-committee and then on to the City Council for approval. The Council will approve or deny the actions. All approved actions will be implemented/acted upon.

With decision making processes and identified mitigation actions in place, the planning team will ensure that the processes described in Table 20-1 will continue to integrate the Lee County Hazard Mitigation Plan Update into existing plans, ordinances and budget discussions.

	TABL	E 20-1. INCORP	ORATION	OF MITI	IGATION ACTIVITIES
Jurisdiction	Type Of Plan	Department	Review Timeline	New Or Existing	Actions To Be Integrated
Lee County	Lee County Subdivision Regulations (2003, as amended)	Lee County Permitting Department	5 years	Existing	Maintain current data on high risk areas via the mitigation plan and regularly incorporate information on high risk hazard areas into the subdivision requirements, thereby eliminating or reducing potential impacts on current and future development.
	Lee County Flood Prevention Order, 2013 as amended	County Judge	2 years	Existing	Overlay high risk/flood prone areas with current and future floodplain regulations (new floodplain maps went into effect on April 2014), thereby minimizing or reducing the impacts of flooding on current and future development.
	Site Plan Review Process	Lee County Permitting Department	Regularly	Existing	The permitting department and/or permitting coordinator (county has proposed to hire a Permitting Coordinator in late 2015) will consider the high hazard areas within the community and make development decisions in the best interest of the community integrating the mitigation plan data and proposed actions as applicable into their decision making processes.
	Capital Improvement plan	County Commissioners' Court	Annual	Existing	During the annual budget review process, bring the identified actions to the Commissioners for approval as part of the Capital Improvements/Capital Project Funds section. The

	TABL	E 20-1. INCORP	ORATION	OF MITI	GATION ACTIVITIES
Jurisdiction	Type Of Plan	Department	Review Timeline	New Or Existing	Actions To Be Integrated
					Commissioners' Court will approve or deny the actions.
	Lee County Basic Emergency Operations Plan	Emergency Management Coordinator	2 years	Existing	Integrate and implement hazard mitigation plan data on high hazards and applicable mitigation actions that are affected by or will affect the emergency operations plan on an annual basis.
City of Giddings	Horizon 2010, A Plan for Giddings	City Council	10 years	Existing	During the regular review process, bring the identified actions to the City Council for approval. The Council will approve or deny the actions.
	City of Giddings Zoning Code, Chapter 10 (2007, as amended)	Code Compliance Officer, Planning & Zoning Commission	5 years	Existing	During the City's regular review and update of the subdivision regulations, they will incorporate current data on high hazard areas thereby reducing or eliminating the potential negative impacts of high hazards on existing and future development.
	Site Plan Review - Zoning Code, Section 153 (1999, as amended)	Code Compliance Officer, Planning & Zoning Commission	Regularly	Existing	The Planning and Zoning Commission will consider the high hazard areas within the community and make development decisions in the best interest of the community integrating the mitigation plan data and proposed actions as applicable into their decision making processes.
	Standard for Floodplain Management (2007)	Code Compliance Officer/ Floodplain Manager	2 years	Existing	During the regular review process, bring the identified actions to the Planning and Zoning Commission and the City Council for approval. The Council will approve or deny the actions.
	City of Giddings Code of Ordinance - Zoning (1999, as amended)	Code Compliance Officer, Planning & Zoning Commission	10 years	Existing	During the City's regular review and update of the City's zoning ordinance, they will incorporate current data on high hazard areas, thereby reducing or eliminating the potential negative impacts of high hazards on existing and future development.
City of Lexington	2002 Comprehensive Plan	Lexington City Council	10 years	Existing	During the regular review process, bring the identified actions to the City Council for approval. The Council will approve or deny the actions.
	Chapter 65, Subdivision of Land	Lexington City Council	5 years	Existing	During the City's regular review and update of the subdivision regulations, they will incorporate current data on high hazard areas thereby reducing or eliminating the potential negative impacts of high hazards on existing and future development.
	Floodplain Ordinance - Adopted within Chapter 65,	Lexington City Council, Planning	2 years	Existing	During the regular review process of the Floodplain Ordinance (within the Subdivision Ordinance), bring the identified actions to the Planning and Zoning Commission and the City

	TABL	E 20-1. INCORP	ORATION	OF MITI	GATION ACTIVITIES
Jurisdiction	Type Of Plan	Department	Review Timeline	New Or Existing	Actions To Be Integrated
	Subdivision of Land	and Zoning Commission			Council for approval. The Council will approve or deny the actions.
	Site Plan Review Process	Building Inspector	Regularly	Existing	The building inspector will consider the high hazard areas within the community and make development decisions in the best interest of the community integrating the mitigation plan data and proposed actions as applicable into their decision making processes.
	City of Lexington Annual Budget	Lexington City Council	Annual	Existing	During the annual budget review process, bring the identified actions to the City Council for approval. The Council will approve or deny the actions.
	Emergency Operations Plan	Emergency Manager Coordinator	2 years	Existing	Under the leadership of the City Council and the City's Emergency Management Coordinator, all appropriate planning documents will be updated to include and implement the appropriate mitigation actions as prioritized in the current hazard mitigation plan.

REFERENCES

- Center for Climate and Energy Solutions. No date. Accessed at http://www.c2es.org/scienceimpacts/basics/faqs/tornadoes. Accessed April 2014.
- Congressional Office of Technology Assessment (OTA). 1993. Preparing for an Uncertain Climate, Vol. I. OTA-O-567. U.S. Government Printing Office, Washington, D.C.
- Federal Emergency Management Agency (FEMA). 2001. Understanding Your Risks; Identifying Hazards and Determining your Risks. FEMA (386-2). August 2001.
- FEMA. 2002. Getting Started; Building Support for Mitigation Planning; FEMA (386-1). September.
- FEMA. 2003. Developing the Mitigation Plan; Identifying Mitigation Actions and Implementing Strategies. FEMA (386-3). April.
- FEMA. 2004. Using HAZUS-MH for Risk Assessment, How to Guide, FEMA (433). August.
- FEMA. 2007. FEMA, National Flood Insurance Program, Community Rating System; CRS Coordinator's Manual FIA-15/2007 OMB No. 1660-0022
- FEMA 2010. http://www.fema.gov. Website accessed 2009, 2010, 2011.
- Federal Reserve Economic Data (FRED), unemployment data, http://m.research.stlouisfed.org/fred/, accessed June 8, 2015.
- International Strategy for Disaster Reduction. 2008. "Disaster Risk Reduction Strategies and Risk Management Practices: Critical Elements for Adaptation to Climate Change." November 11.
- National Aeronautics and Space Administration (NASA). 2004. http://earthobservatory.nasa.gov/Newsroom/view.php?id=25145 NASA Earth Observatory News Web Site Item, dated August 2.
- National Lightning Detection Network, owned and operated by Vaisala, "Cloud-To-Ground Lightning Flashes". (http://www.lightningsafety.noaa.gov/stats/97-10cloud_to_ground-state-list.pdf), accessed May 7, 2015. Updated July 2011. Published by the National Oceanic and Atmospheric Administration.
- National Oceanic and Atmospheric Administration (NOAA). 2007. Storm Prediction Center. http://www.spc.noaa.gov/faq/tornado/ef-scale.html
- NOAA. 2010. National Climatic Data Center website. Accessed at: http://www4.ncdc.noaa.gov/cgiwin/wwcgi.dll?wwEvent~Storms.
- Long, Christopher. 2010. "Lee County," Handbook of Texas Online. (https://tshaonline.org/handbook/online/articles/hcl06), accessed October 19, 2015. Uploaded on August 31, 2010. Published by the Texas State Historical Association.
- Soil and Water Conservation Society. 2003. Conservation Implications of Climate Change: Soil Erosion and Runoff from Cropland. Ankeny, IA: Soil and Water Conservation Society. Available on-line at http://www.swcs.org/en/publications/conservation_implications_of_climate_change/.
- Texas Division of Emergency Management. 2013. State of Texas Mitigation Plan Update. October 15.
- U.S. Army Corps of Engineers (USACE). 1997. Hydrologic Engineering Requirements for Reservoirs, Engineer Manual. EM 1110-2-1420. October 31.
- U.S. Census. 2010. Data from 2010 U.S. Census. U.S. Census Bureau. http://factfinder.census.gov/.
- U.S. Environmental Protection Agency (EPA). 2006. Excessive Heat Events Guidebook. EPA 430-B-06-005. Available online at http://www.epa.gov/heatisld/about/pdf/EHEguide_final.pdf.

- U.S. Geological Survey (USGS). 1989. The Severity of an Earthquake. U.S. Government Printing Office: 1989-288-913. Accessed at: http://pubs.usgs.gov/gip/earthq4/severity_text.html
- USGS. 2008. An Atlas of ShakeMaps for Selected Global Earthquakes. U.S. Geological Survey Open-File Report 2008-1236. Prepared by Allen, T.I., Wald, D.J., Hotovec, A.J., Lin, K., Earle, P.S. and Marano, K.D.
- USGS. 2010. PAGER—Rapid Assessment of an Earthquake's Impact. U.S. Geological Survey Fact Sheet 2010-3036. September.
- Wilhite, D .A, and M.H. Glantz. 198 5. U nderstanding t he D rought P henomenon: The R ole of Definitions. Water International. 10 (3): 111-120.

APPENDIX A. ACRONYMS AND DEFINITIONS

APPENDIX A. ACRONYMS AND DEFINITIONS

ACRONYMS

Note: Acronyn	us are defined the first time they are used in each part of this plan.
°F	Degrees Fahrenheit
°C	Degrees Celsius
%g	Percentage of gravity
44 CFR	Title 44 Code of Federal Regulations
CAPCOG	Capital Area Council of Governments
CEPRA	Coastal Erosion Planning and Response Act
CPZ	Community Protection Zone
CWA	Clean Water Act
CWPP	Community Wildfire Protection Plan
CWSRF	Clean Water State Revolving Fund
DMA	Disaster Mitigation Act of 2000
DPS	Department of Public Safety
EAP	Education and Awareness Program
EF	Enhanced Fujita
EOP	Emergency Operations Plan
EPA	U.S. Environmental Protection Agency
ESA	Endangered Species Act
FEMA	Federal Emergency Management Agency
FERC	Federal Energy Regulatory Commission
FIRM	Flood Insurance Rate Map
FPA-FOD	Fire Program Analysis-Fire-Occurrence Database
GEDC	Giddings Economic Development Corporation
GIS	Geographic Information System
GLF	Geophysical Log Facility
GLO	General Land Office
HAZMAT	Hazardous Materials
HAZUS-MH	Hazards, United States-Multi Hazard
HMGP	Hazard Mitigation Grant Program
KT	Knot
LCRA	Lower Colorado River Authority

LPR	Local Plans and Regulations
MLI	Midterm Levee Inventory
ML	Local Magnitude Scale
mph	Miles per Hour
M_W	Moment Magnitude
NEHRP	National Earthquake Hazards Reduction Program
NFIP	National Flood Insurance Program
NIMS	National Incident Management System
NOAA	National Oceanic and Atmospheric Administration
NREL	National Renewable Energy Laboratory
NSP	Natural Systems Protection
NWS	National Weather Service
OSSF	On-site Sewage/Sewer Facilities
OTA	Congressional Office of Technology Assessment
PDM	Pre-Disaster Mitigation
PDI	Palmer Drought Index
PGA	Peak Ground Acceleration
PHDI	Palmer Hydrological Drought Index
PMF	Probable Maximum Flood
SIP	Structure and Infrastructure Project
SFHA	Special Flood Hazard Area
SPI	Standardized Precipitation Index
SWCD	Soil and Water Conservation District
TCEQ	Texas Commission on Environmental Quality
TCRFC	Texas Colorado River Floodplain Coalition
TDEM	Texas Division of Emergency Management
TFS	Texas Forest Service
TSSWCB	Texas State Soil and Water Conservation Board
TWDB	Texas Water Development Board
TxWRAP	Texas A&M Forest Service Wildfire Risk Assessment Portal
USACE	U.S. Army Corps of Engineers
USDA	U.S. Department of Agriculture
USFS	U.S. Forest Service
USGS	U.S. Geological Survey
VRI	Values Response Index

WHP Wildfire Hazard PotentialWUI Wildland Urban Interface

DEFINITIONS

100-Year Flood: The term "100-year flood" can be misleading. The 100-year flood does not necessarily occur once every 100 years. Rather, it is the flood that has a 1% chance of being equaled or exceeded in any given year. Thus, the 100-year flood could occur more than once in a relatively short period of time. The Federal Emergency Management Agency (FEMA) defines it as the 1% annual chance flood, which is now the standard definition used by most federal and state agencies and by the National Flood Insurance Program (NFIP).

Accredited Levee: A levee that is shown on a FIRM as providing protection from the 1% annual chance or greater flood. A **non-accredited or de-accredited levee** is a levee that is not shown on a FIRM as providing protection from the 1% annual chance or greater flood. A **provisionally accredited levee** is a previously accredited levee that has been de-accredited for which data and/or documentation is pending that will show the levee is compliant with NFIP regulations.

Acre-Foot: An acre-foot is the amount of water it takes to cover 1 acre to a depth of 1 foot. This measure is used to describe the quantity of storage in a water reservoir. An acre-foot is a unit of volume. One acre foot equals 7,758 barrels; 325,829 gallons; or 43,560 cubic feet. An average household of four will use approximately 1 acre-foot of water per year.

Asset: An asset is any man-made or natural feature that has value, including, but not limited to, people; buildings; infrastructure, such as bridges, roads, sewers, and water systems; lifelines, such as electricity and communication resources; and environmental, cultural, or recreational features such as parks, wetlands, and landmarks.

Base Flood: The flood having a 1% chance of being equaled or exceeded in any given year, also known as the "100-year" or "1% chance" flood. The base flood is a statistical concept used to ensure that all properties subject to the NFIP are protected to the same degree against flooding.

Basin: A basin is the area within which all surface water, whether from rainfall, snowmelt, springs, or other sources, flows to a single water body or watercourse. The boundary of a river basin is defined by natural topography, such as hills, mountains, and ridges. Basins are also referred to as "watersheds" and "drainage basins."

Benefit: A benefit is a net project outcome and is usually defined in monetary terms. Benefits may include direct and indirect effects. For the purposes of benefit-cost analysis of proposed mitigation measures, benefits are limited to specific, measurable risk reduction factors, including reduction in expected property losses (buildings, contents, and functions) and protection of human life.

Benefit/Cost Analysis: A benefit/cost analysis is a systematic, quantitative method of comparing projected benefits to projected costs of a project or policy. It is used as a measure of cost effectiveness.

Breach: An opening through which floodwaters may pass after part of a levee has given way.

Building: A building is defined as a structure that is walled and roofed, principally aboveground, and permanently fixed to a site. The term includes manufactured homes on permanent foundations on which the wheels and axles carry no weight.

Capability Assessment: A capability assessment provides a description and analysis of a community's current capacity to address threats associated with hazards. The assessment includes two components: an inventory of an agency's mission, programs, and policies, and an analysis of its capacity to carry them out. A capability assessment is an integral part of the planning process in which a community's actions to reduce

losses are identified, reviewed, and analyzed, and the framework for implementation is identified. The following capabilities were reviewed under this assessment:

- Legal and regulatory capability
- Administrative and technical capability
- Fiscal capability

Collapsible soils: Collapsible soils consist of loose, dry, low-density materials that collapse and compact under the addition of water or excessive loading. Soil collapse occurs when the land surface is saturated at depths greater than those reached by typical rain events. This saturation eliminates the clay bonds holding the soil grains together. Similar to expansive soils, collapsible soils result in structural damage such as cracking of the foundation, floors, and walls in response to settlement.

Community Protection Zones (CPZ): CPZs are based on an analysis of the "Where People Live" housing density data and surrounding fire behavior potential and represent those areas considered highest priority for wildfire mitigation planning activities. "Rate of Spread" data is used to determine the areas of concern around populated areas that are within a 2-hour fire spread distance.

Conflagration: A fire that grows beyond its original source area to engulf adjoining regions. Wind, extremely dry or hazardous weather conditions, excessive fuel buildup, and explosions are usually the elements behind a wildfire conflagration.

Critical Area: An area defined by state or local regulations as deserving special protection because of unique natural features or its value as habitat for a wide range of species of flora and fauna. A sensitive/critical area is usually subject to more restrictive development regulations.

Critical Facility: Facilities and infrastructure that are critical to the health and welfare of the population. These become especially important after any hazard event occurs. For the purposes of this plan, critical facilities include:

- Structures or facilities that produce, use, or store highly volatile, flammable, explosive, toxic or water reactive materials.
- Hospitals, nursing homes, and housing likely to contain occupants who may not be sufficiently mobile to avoid death or injury during a hazard event.
- Police stations, fire stations, vehicle and equipment storage facilities, and emergency operations centers that are needed for disaster response before, during, and after hazard events.
- Public and private utilities, facilities and infrastructure that are vital to maintaining or restoring normal services to areas damaged by hazard events.
- Government facilities.

Dam: A barrier, including one for flood detention, designed to impound liquid volumes and which has a height of dam greater than six feet (Texas Administrative Code, Ch. 299, 1986).

Dam Failure: Dam failure refers to a partial or complete breach in a dam (or levee) that impacts its integrity. Dam failures occur for a number of reasons, such as flash flooding, inadequate spillway size, mechanical failure of valves or other equipment, freezing and thawing cycles, earthquakes, and intentional destruction.

Debris Flow: Dense mixtures of water-saturated debris that move down-valley; looking and behaving much like flowing concrete. They form when loose masses of unconsolidated material are saturated, become unstable, and move down slope. The source of water varies but includes rainfall, melting snow or ice, and glacial outburst floods.

Deposition: Deposition is the placing of eroded material in a new location.

Disaster Mitigation Act of 2000 (DMA): The DMA is Public Law 106-390 and is the latest federal legislation enacted to encourage and promote proactive, pre-disaster planning as a condition of receiving financial assistance under the Robert T. Stafford Act. The DMA emphasizes planning for disasters before they occur. Under the DMA, a pre-disaster hazard mitigation program and new requirements for the national post-disaster hazard mitigation grant program (HMGP) were established.

Drainage Basin: A basin is the area within which all surface water, whether from rainfall, snowmelt, springs or other sources, flows to a single water body or watercourse. The boundary of a river basin is defined by natural topography, such as hills, mountains and ridges. Drainage basins are also referred to as **watersheds** or **basins**.

Drought: Drought is a period of time without substantial rainfall or snowfall from one year to the next. Drought can also be defined as the cumulative impacts of several dry years or a deficiency of precipitation over an extended period of time, which in turn results in water shortages for some activity, group, or environmental function. A hydrological drought is caused by deficiencies in surface and subsurface water supplies. A socioeconomic drought impacts the health, well-being, and quality of life or starts to have an adverse impact on a region. Drought is a normal, recurrent feature of climate and occurs almost everywhere.

Earthquake: An earthquake is defined as a sudden slip on a fault, volcanic or magmatic activity, and sudden stress changes in the earth that result in ground shaking and radiated seismic energy. Earthquakes can last from a few seconds to over 5 minutes, and have been known to occur as a series of tremors over a period of several days. The actual movement of the ground in an earthquake is seldom the direct cause of injury or death. Casualties may result from falling objects and debris as shocks shake, damage, or demolish buildings and other structures.

Emergency Action Plan: A document that identifies potential emergency conditions at a dam and specifies actions to be followed to minimize property damage and loss of life. The plan specifies actions the dam owner should take to alleviate problems at a dam. It contains procedures and information to assist the dam owner in issuing early warning and notification messages to responsible downstream emergency management authorities of the emergency situation. It also contains inundation maps to show emergency management authorities the critical areas for action in case of an emergency. (FEMA 64)

Enhanced Fujita Scale (EF-scale): The EF-scale is a set of wind estimates (not measurements) based on damage. It uses 3-second gusts estimated at the point of damage based on a judgment of 8 levels of damage to the 28 indicators. These estimates vary with height and exposure. Standard measurements are taken by weather stations in openly exposed area.

Epicenter: The point on the earth's surface directly above the hypocenter of an earthquake. The location of an earthquake is commonly described by the geographic position of its epicenter and by its focal depth.

Expansive Soil: Expansive soil and rock are characterized by clayey material that shrinks as it dries or swells as it becomes wet.

Exposure: Exposure is defined as the number and dollar value of assets considered to be at risk during the occurrence of a specific hazard.

Extent: The extent is the size of an area affected by a hazard.

Extreme Heat: Summertime weather that is substantially hotter or more humid than average for a location at that time of year.

Fault: A fracture in the earth's crust along which two blocks of the crust have slipped with respect to each other.

Fire Behavior: Fire behavior refers to the physical characteristics of a fire and is a function of the interaction between the fuel characteristics (such as type of vegetation and structures that could burn),

topography, and weather. Variables that affect fire behavior include the rate of spread, intensity, fuel consumption, and fire type (such as underbrush versus crown fire).

Fire Frequency: Fire frequency is the broad measure of the rate of fire occurrence in a particular area. An estimate of the areas most likely to burn is based on past fire history or fire rotation in the area, fuel conditions, weather, ignition sources (such as human or lightning), fire suppression response, and other factors.

Flash Flood: A flash flood occurs with little or no warning when water levels rise at an extremely fast rate.

Flood: The inundation of normally dry land resulting from the rising and overflowing of a body of water.

Flood Insurance Rate Map (FIRM): FIRMs are the official maps on which the Federal Emergency Management Agency (FEMA) has delineated the Special Flood Hazard Area (SFHA).

Flood Insurance Study: A report published by the Federal Insurance and Mitigation Administration for a community in conjunction with the community's FIRM. The study contains such background data as the base flood discharges and water surface elevations that were used to prepare the FIRM. In most cases, a community FIRM with detailed mapping will have a corresponding flood insurance study.

Floodplain: Any land area susceptible to being inundated by flood waters from any source. A FIRM identifies most, but not necessarily all, of a community's floodplain as the SFHA.

Floodway: Floodways are areas within a floodplain that are reserved for the purpose of conveying flood discharge without increasing the base flood elevation more than one foot. Generally speaking, no development is allowed in floodways, as any structures located there would block the flow of floodwaters.

Focal Depth: The depth from the earth's surface to the hypocenter.

Freeboard: Freeboard is the margin of safety added to the base flood elevation.

Freezing Rain: The result of rain occurring when the temperature is below the freezing point. The rain freezes on impact, resulting in a layer of glaze ice up to an inch thick. In a severe ice storm, an evergreen tree 60 feet high and 30 feet wide can be burdened with up to 6 tons of ice, creating a threat to power and telephone lines and transportation routes.

Frequency: For the purposes of this plan, frequency refers to how often a hazard of specific magnitude, duration, or extent is expected to occur on average. Statistically, a hazard with a 100-year frequency is expected to occur about once every 100 years on average and has a 1% chance of occurring any given year. Frequency reliability varies depending on the type of hazard considered.

Fujita Scale of Tornado Intensity: Tornado wind speeds are sometimes estimated on the basis of wind speed and damage sustained using the Fujita Scale. The scale rates the intensity or severity of tornado events using numeric values from F0 to F5 based on tornado wind speed and damage. An F0 tornado (wind speed less than 73 miles per hour [mph]) indicates minimal damage (such as broken tree limbs), and an F5 tornado (wind speeds of 261 to 318 mph) indicates severe damage.

Goal: A goal is a general guideline that explains what is to be achieved. Goals are usually broad-based, long-term, policy-type statements and represent global visions. Goals help define the benefits that a plan is trying to achieve. The success of a hazard mitigation plan is measured by the degree to which its goals have been met (that is, by the actual benefits in terms of actual hazard mitigation).

Geographic Information System (GIS): GIS is a computer software application that relates data regarding physical and other features on the earth to a database for mapping and analysis.

Ground Subsidence: Ground subsidence is the sinking of land over human-caused or natural underground voids and the settlement of native low density soils.

Groundwater Depletion: Groundwater depletion occurs when groundwater is pumped from pore spaces between grains of sand and gravel. If an aquifer has beds of clay or silt within or next to it, the lowered water pressure in the sand and gravel causes slow drainage of water from the clay and silt beds. The reduced water pressure is a loss of support for the clay and silt beds. Because these beds are compressible, they compact (become thinner), and the effects are seen as a lowering of the land surface.

Hazard: A hazard is a source of potential danger or adverse condition that could harm people or cause property damage.

Hazard Mitigation Grant Program (HMGP): Authorized under Section 202 of the Robert T. Stafford Disaster Relief and Emergency Assistance Act, the HMGP is administered by FEMA and provides grants to states, tribes, and local governments to implement hazard mitigation actions after a major disaster declaration. The purpose of the program is to reduce the loss of life and property due to disasters and to enable mitigation activities to be implemented as a community recovers from a disaster.

Hazards U.S. Multi-Hazard (HAZUS-MH) Loss Estimation Program: HAZUS-MH is a GIS-based program used to support the development of risk assessments as required under the DMA. The HAZUS-MH software program assesses risk in a quantitative manner to estimate damages and losses associated with natural hazards. HAZUS-MH is FEMA's nationally applicable, standardized methodology and software program and contains modules for estimating potential losses from earthquakes, floods, and wind hazards. HAZUS-MH has also been used to assess vulnerability (exposure) for other hazards.

High Hazard Dam — Dams where failure or operational error will probably cause loss of human life. (FEMA 333)

Hurricane: A tropical cyclone with maximum sustained surface winds (using the U.S. 1-minute average) of 64 knot (kt) (74 miles per hour [mph]) or more.

Hydraulics: Hydraulics is the branch of science or engineering that addresses fluids (especially water) in motion in rivers or canals, works and machinery for conducting or raising water, the use of water as a prime mover, and other fluid-related areas.

Hydrology: Hydrology is the analysis of waters of the earth. For example, a flood discharge estimate is developed by conducting a hydrologic study.

Hypocenter: The region underground where an earthquake's energy originates.

Intensity: For the purposes of this plan, intensity refers to the measure of the effects of a hazard.

Interface Area: An area susceptible to wildfires and where wildland vegetation and urban or suburban development occur together. An example would be smaller urban areas and dispersed rural housing in forested areas.

Inventory: The assets identified in a study region comprise an inventory. Inventories include assets that could be lost when a disaster occurs and community resources are at risk. Assets include people, buildings, transportation, and other valued community resources.

Land Subsidence: Land subsidence is the loss of surface elevation due to the removal of subsurface support. In Texas there are three types of subsidence that warrant the most concern: groundwater depletion, sinkholes in karst areas, and erosion.

Landslide: Landslides can be described as the sliding movement of masses of loosened rock and soil down a hillside or slope. Fundamentally, slope failures occur when the strength of the soils forming the slope exceeds the pressure, such as weight or saturation, acting upon them.

Levee: A man-made structure, usually an earthen embankment or concrete floodwall, designed and constructed in accordance with sound engineering practices to contain, control, or divert the flow of water so as to provide reasonable assurance of excluding temporary flooding from the leveed area.

Lightning: Lightning is an electrical discharge resulting from the buildup of positive and negative charges within a thunderstorm. When the buildup becomes strong enough, lightning appears as a "bolt," usually within or between clouds and the ground. A bolt of lightning instantaneously reaches temperatures approaching 50,000°F. The rapid heating and cooling of air near lightning causes thunder. Lightning is a major threat during thunderstorms. In the United States, 75 to 100 people are struck and killed by lightning each year (see http://www.fema.gov/hazard/thunderstorms/thunder.shtm).

Liquefaction: Liquefaction is the complete failure of soils, occurring when soils lose shear strength and flow horizontally. It is most likely to occur in fine grain sands and silts, which behave like viscous fluids when liquefaction occurs. This situation is extremely hazardous to development on the soils that liquefy, and generally results in extreme property damage and threats to life and safety.

Local Government: Any county, municipality, city, town, township, public authority, school district, special district, intrastate district, council of governments (regardless of whether the council of governments is incorporated as a nonprofit corporation under state law), regional or interstate government entity, or agency or instrumentality of a local government; any Indian tribe or authorized tribal organization, or Alaska Native village or organization; and any rural community, unincorporated town or village, or other public entity.

Magnitude: Magnitude is the measure of the strength of an earthquake, and is typically measured by the Richter scale. As an estimate of energy, each whole number step in the magnitude scale corresponds to the release of about 31 times more energy than the amount associated with the preceding whole number value.

Mitigation: A preventive action that can be taken in advance of an event that will reduce or eliminate the risk to life or property.

Mitigation Actions: Mitigation actions are specific actions to achieve goals and objectives that minimize the effects from a disaster and reduce the loss of life and property.

National Flood Insurance Program (NFIP): The NFIP provides federally backed flood insurance in exchange for communities enacting floodplain regulations.

Objective: For the purposes of this plan, an objective is defined as a short-term aim that, when combined with other objectives, forms a strategy or course of action to meet a goal.

Peak Ground Acceleration: Peak Ground Acceleration is a measure of the highest amplitude of ground shaking that accompanies an earthquake, based on a percentage of the force of gravity.

Preparedness: Preparedness refers to actions that strengthen the capability of government, citizens, and communities to respond to disasters.

Presidential Disaster Declaration: These declarations are typically made for events that cause more damage than state and local governments and resources can handle without federal government assistance. Generally, no specific dollar loss threshold has been established for such declarations. A Presidential Disaster Declaration puts into motion long-term federal recovery programs, some of which are matched by state programs, designed to help disaster victims, businesses, and public entities.

Probability of Occurrence: The probability of occurrence is a statistical measure or estimate of the likelihood that a hazard will occur. This probability is generally based on past hazard events in the area and a forecast of events that could occur in the future. A probability factor based on yearly values of occurrence is used to estimate probability of occurrence.

Repetitive Loss Property: Any NFIP-insured property that, since 1978 and regardless of any changes of ownership during that period, has experienced:

- Four or more paid flood losses in excess of \$1,000; or
- Two paid flood losses in excess of \$1,000 within any 10-year period since 1978; or

• Three or more paid losses that equal or exceed the current value of the insured property.

Riparian Zone: The area along the banks of a natural watercourse.

Riverine: Of or produced by a river. Riverine floodplains have readily identifiable channels. Floodway maps can only be prepared for riverine floodplains.

Risk: Risk is the estimated impact that a hazard would have on people, services, facilities, and structures in a community. Risk measures the likelihood of a hazard occurring and resulting in an adverse condition that causes injury or damage. Risk is often expressed in relative terms such as a high, moderate, or low likelihood of sustaining damage above a particular threshold due to occurrence of a specific type of hazard. Risk also can be expressed in terms of potential monetary losses associated with the intensity of the hazard.

Risk Assessment: Risk assessment is the process of measuring potential loss of life, personal injury, economic injury, and property damage resulting from hazards. This process assesses the vulnerability of people, buildings, and infrastructure to hazards and focuses on (1) hazard identification; (2) impacts of hazards on physical, social, and economic assets; (3) vulnerability identification; and (4) estimates of the cost of damage or costs that could be avoided through mitigation.

Risk Ranking: This ranking serves two purposes, first to describe the probability that a hazard will occur, and second to describe the impact a hazard will have on people, property, and the economy. Risk estimates for the jurisdiction are based on the methodology that the jurisdiction used to prepare the risk assessment for this plan. The following equation shows the risk ranking calculation:

Risk Ranking = Probability + Impact (people + property + economy)

Robert T. Stafford Act: The Robert T. Stafford Disaster Relief and Emergency Assistance Act, Public Law 100-107, was signed into law on November 23, 1988. This law amended the Disaster Relief Act of 1974, Public Law 93-288. The Stafford Act is the statutory authority for most federal disaster response activities, especially as they pertain to FEMA and its programs.

Severe Local Storm: Small-scale atmospheric systems, including tornadoes, thunderstorms, windstorms, ice storms, and snowstorms. These storms may cause a great deal of destruction and even death, but their impact is generally confined to a small area. Typical impacts are on transportation infrastructure and utilities.

Significant Hazard Dam: Dams where failure or operational error will result in no probable loss of human life but can cause economic loss, environmental damage, or disruption of lifeline facilities, or can impact other concerns. Significant hazard dams are often located in rural or agricultural areas but could be located in areas with population and significant infrastructure. (FEMA 333)

Sinkhole: A collapse depression in the ground with no visible outlet. Its drainage is subterranean. It is commonly vertical-sided or funnel-shaped.

Soil Erosion: Soil erosion is the removal and simultaneous transportation of earth materials from one location to another by water, wind, waves, or moving ice.

Special Flood Hazard Area: The base floodplain delineated on a FIRM. The SFHA is mapped as a Zone A in riverine situations. The SFHA may or may not encompass all of a community's flood problems.

Stakeholder: Business leaders, civic groups, academia, non-profit organizations, major employers, managers of critical facilities, farmers, developers, special purpose districts, and others whose actions could impact hazard mitigation.

Stream Bank Erosion: Stream bank erosion is common along rivers, streams, and drains where banks have been eroded, sloughed, or undercut. However, it is important to remember that a stream is a dynamic and constantly changing system. It is natural for a stream to want to meander, so not all eroding banks are "bad" and in need of repair. Generally, stream bank erosion becomes a problem where development has limited

the meandering nature of streams, where streams have been channelized, or where stream bank structures (like bridges, culverts, etc.) are located in places where they can actually cause damage to downstream areas. Stabilizing these areas can help protect watercourses from continued sedimentation, damage to adjacent land uses, control unwanted meander, and improvement of habitat for fish and wildlife.

Steep Slope: Different communities and agencies define it differently, depending on what it is being applied to, but generally a steep slope is a slope in which the percent slope equals or exceeds 25%. For this study, steep slope is defined as slopes greater than 33%.

Sustainable Hazard Mitigation: This concept includes the sound management of natural resources, local economic and social resiliency, and the recognition that hazards and mitigation must be understood in the largest possible social and economic context.

Thunderstorm: A thunderstorm is a storm with lightning and thunder produced by cumulonimbus clouds. Thunderstorms usually produce gusty winds, heavy rains, and sometimes hail. Thunderstorms are usually short in duration (seldom more than 2 hours). Heavy rains associated with thunderstorms can lead to flash flooding during the wet or dry seasons.

Tornado: A tornado is a violently rotating column of air extending between and in contact with a cloud and the surface of the earth. Tornadoes are often (but not always) visible as funnel clouds. On a local scale, tornadoes are the most intense of all atmospheric circulations, and winds can reach destructive speeds of more than 300 mph. A tornado's vortex is typically a few hundred meters in diameter, and damage paths can be up to 1 mile wide and 50 miles long.

Tropical Storm: A tropical cyclone with maximum sustained surface wind speed (using the U.S. 1-minute average) ranges from 34 kt (39 mph) to 63 kt (73 mph).

Tropical Depression: A tropical cyclone with maximum sustained surface wind speed (using the U.S. 1-minute average) ranges from 4 kt (39 mph) to 63 kt (73 mph).

Values Response Index (VRI): The wildfire VRI reflects a rating of the potential impact of a wildfire on values or assets. The VRI is an overall rating that combines the impact ratings for WUI (housing density) and Pine Plantations (pine age) into a single measure. VRI combines the likelihood of a fire occurring (threat) with those areas of most concern that are adversely impacted by fire to derive a single overall measure of wildfire risk.

Vulnerability: Vulnerability describes how exposed or susceptible an asset is to damage. Vulnerability depends on an asset's construction, contents, and the economic value of its functions. Like indirect damages, the vulnerability of one element of the community is often related to the vulnerability of another. For example, many businesses depend on uninterrupted electrical power. Flooding of an electric substation would affect not only the substation itself but businesses as well. Often, indirect effects can be much more widespread and damaging than direct effects.

Watershed: A watershed is an area that drains downgradient from areas of higher land to areas of lower land to the lowest point, a common drainage basin.

Wildfire: Wildfire refers to any uncontrolled fire occurring on undeveloped land that requires fire suppression. The potential for wildfire is influenced by three factors: the presence of fuel, topography, and air mass. Fuel can include living and dead vegetation on the ground, along the surface as brush and small trees, and in the air such as tree canopies. Topography includes both slope and elevation. Air mass includes temperature, relative humidity, wind speed and direction, cloud cover, precipitation amount, duration, and the stability of the atmosphere at the time of the fire. Wildfires can be ignited by lightning and, most frequently, by human activity including smoking, campfires, equipment use, and arson.

Wildfire Hazard Potential (WHP): The wildfire threat or WHP is the likelihood of a wildfire occurring or burning into an area. Threat is calculated by combining multiple landscape characteristics including

surface and canopy fuels, fire behavior, historical fire occurrences, weather observations, terrain conditions, and other factors.

Windstorm: Windstorms are generally short-duration events involving straight-line winds or gusts exceeding 50 mph. These gusts can produce winds of sufficient strength to cause property damage. Windstorms are especially dangerous in areas with significant tree stands, exposed property, poorly constructed buildings, mobile homes (manufactured housing units), major infrastructure, and aboveground utility lines. A windstorm can topple trees and power lines; cause damage to residential, commercial, critical facilities; and leave tons of debris in its wake.

Winter Storm: A storm having significant snowfall, ice, or freezing rain; the quantity of precipitation varies by elevation.

Zoning Ordinance: The zoning ordinance designates allowable land use and intensities for a local jurisdiction. Zoning ordinances consist of two components: a zoning text and a zoning map.

Lee County Hazard Mitigation Plan Update

APPENDIX B. LOCAL MITIGATION PLAN REVIEW TOOL

APPENDIX B. LOCAL MITIGATION PLAN REVIEW TOOL

This appendix presents the local mitigation action review tool for the Lee County Hazard Mitigation Plan. The review tool demonstrates how the plan meets federal regulations and offers state and FEMA planners an opportunity to provide feedback on the plan to the community.

Lee County Hazard Mitigation Plan Update

APPENDIX C. PUBLIC OUTREACH

APPENDIX C. PUBLIC OUTREACH

This appendix includes the agenda, sign-in sheets, and meeting notes from each of the three Steering Committee Meetings. This appendix also include the results of the Lee County Hazard Mitigation Plan questionnaire, as described in Section 3.7.2.

Hazard Mitigation Plan Updates for Lee and Williamson Counties

Steering Committee Kickoff Meeting

Wednesday, March 11, 2015

9:00 AM

<u>Agenda</u>

- 1. Welcome and Introductions
- 2. Steering Committee Purpose and Responsibilities
- 3. Plan Partners and Signators
- 4. Purpose and Goals of the Update Process
- 5. Review and Amend Mitigation Goals and Objectives (in packet)
- 6. Review Mitigation Actions from TCRFC Hazard Mitigation Plan (in packet)
- 7. Critical Facilities Discussion
- 8. Next Steps
 - a. Capabilities Assessment
 - b. Hazard Analysis Review
 - c. Community Participation and Survey (in packet)
- 9. Next meeting date ???
- 10. Adjournment

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 2A March 11 2015	
---	--

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	EMAIL	SIGN - IN
Eivens	Brenda	Williamson	City of Cedar Park	<u>eivens@cedarparktx.us;</u>	
Powell	Matt	Williamson	City of Cedar Park	<u>mayor@cedarparktx.us;</u>	
Glanton	Michael	Williamson	City of Cedar Park	michael.clanton@cedarparktx.gov;	
BRIGH	Volu V	win put	Pity JLP	Tohn, Bright & radergak. on	
-					
Bartos Cahill	Debra	Williamson	City of Florence	dcahill@florencetex.com;	
Condon	Mary	Williamson	City of Florence	<u>mayor@florencetex.com;</u>	
Crane	Amy	Williamson	City of Florence	acrane@florencetex.com;	
Shelton	Robert	Williamson	City of Florence	Rshelton@florencevfd.org	VII. ha I all
Marinik	Gerald	Williamson	City of Florence	gmarinik@florencetex.com;	as A 1 and
Kerwood	Scott	Williamson	City of Hutto	sdkerwood@huttofirerescue.org	All A
Lafferty	Michael	Williamson	City of Hutto	Amichael.lafferty@huttotx.gov	M. Hr
Gilmore	Patti	Williamsen	City of Hutto	patti.gilmore@huttotx.gov;	
Holland	Debbie	Williamson	City of Hutto		

IVIAI ULI 11, 2013

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	EMAIL	SIGN - IN
Dowell	nhoL	Lee	City of Giddings	johndowell@giddings.net	
Jones	Fred	Lee	City of Giddings	<u>DeeDeeJones2@verizon.net;</u>	
Jorgensen	Ricky	Lee	City of Giddings	citymanager@giddings.net	
Schneider	Spencer	Lee	City of Giddings	sschneider@giddings.net;	
Zgabay	Jeffrey	Lee	City of Giddings	jzgabay@giddings.net;	
Cox	Pam	Lee	City of Lexington	cityoflexington@reveillebroadband.com;	
Fischer	Paul E.	Lee	Lee County	paul.fischer@co.lee.tx.us;	
Hartfield	Douglas	Lee	Lee County	commissionerpct2@co.lee.tx.us;	
Pitts	Maurice	Lee	Lee County		
Kieschnick	Hilary	Lee	Lee County	<u>hilary kięschnick@co.lee.tx.us;</u>	
Mallinger	James	Williamson	City of Cedar Park	<u>James.Mallinger@cedarparktx.us;</u>	
Bonn	Garrett	Williamson	City of Cedar Park	<u>garret.bonn@cedarparktx.us;</u>	73-6-
Jackson	Jessica	Williamson	City of Cedar Park		

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	EMAIL	SIGN - IN
	Marty	Will; amson	1 +	Mherrin @ WILCO. ORG	Muster Maria
	John I	Williamson	Williamson County	jsneed@wilco.org;	
	Dan A.	Williamson	Williamson County	dgattis@wilco.org	
	Jarred	Williamson	Williamson County	jthomas@wilco.org;	
	Rebecca	Williamson	Williamson County	<u>rclemons@wilco.org</u>	
3	Zuzernemany David	11	11	dzwernemann muilcoveren	K & Sundan -
	GEUGE	, (11	garesell witway	Sion S

÷

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 2A March 11, 2015

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 2 March 24, 2015

ĩ

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	Email	SIGN - IN
Dowell	John	Lee	City of Giddings	johndowell@giddings.net	
Jones	Fred	Lee	City of Giddings	DeeDeeJones2@verizon.net;	
Jorgensen	Ricky	Lee	City of Giddings	citymanager@giddings.net	
Schneider	Spencer	Lee	City of Giddings	sschneider@giddings.net;	on other sheet
Zgabay	Jeffrey	Lee	City of Giddings	jzgabay@giddings.net.	
Lacy	Kerry	Bastrop	City of Elgin	klacy@ci.elgin.tx.us	
Alvarez	Lucretia	Bastrop	City of Elgin	lalvararez@ci.elgin.tx.us	
Van Landingh Stacey	Stacey	Bastrop	City of Elgin		
Cazares	Jim	Bastrop	City of Elgin	jcazares@ci.elgin.tx.us	
Cooke	Gary	Bastrop	City of Elgin	gcooke@ci.elgin.tx.us;	
Cox	Pam	Lee	City of Lexington	cityoflexington@reveillebroadband.com;	
Maddalde	Jehnny	Ler	CITY OF Lexing Tor	CpT Wooldaldycelexinyton PDTX.089 of	Amal hicklife
	CHARLOTTE	LEE	Ň	CITY OF LEXINGTON CITTOF LEXMAYOR A MAJL . COM	Phan letter Harber
					- have power and

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	Email	SIGN - IN
. Carriacu	Jant	Fayith	Favelte Cound	i janet. carriagno as. Cureth. Hrus	And I Jawn
Rost .	Jep	Fayette	9	_	Vot Rat
Fischer	Paul E.	Lee		pa	
Hartfield	Douglas	Lee	Lee County	commissionerpct2@co.lee.tx.us;	
Pitts	Maurice	Lee	Lee County		
Kieschnick	Hilary	Lee	Lee County	hilary.kieschnick@co.lee.tx.us;	0"
PESCHKE DELYIN	DECYNN	LEE	LEE COUNTY	EMC @ CO, LEE, TK. US	When a
MASON	DAvid	Colorado	City of Weinne	City of Weinne city treasure evenuetexas.org	Delh
Stoever	Dolores	Colorado	City of Weimar	citysec@weimartexas.org;	
Miller	Ray	Colorado	Colorado City of Weimar	citymgr@weimartexas.org	
koller	Milton	Colorado	City of Weimar	mayor@weimartexas.org	
Bar	Vickie	Bhetner Co.	Bestrop	Victure . box @ co. bastron tr. 1/5	1 Inter Dog
Bunert	Blake	Basto	Butily	blate. Somment. @ Co: basy top.	1 Bleh Dowert
U°lson	Tom	202	Bas Cutri	tom. Wilson Bro, bashup txils	ARU len
Spooner	AMA	Betwo	BAS CNTY	William . Spooner Q CO. bastrop.	A BOUL
Merritt	David	Teckson	Teckson City of Ganado	sanado od 4010 citol ando c	on N 294
CALARES JAMES		BAS TOLOP	elgin	1CAZARESPECI. Elgid. thinks	Henart
			/	7)

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 2 March 24, 2015

Williamson County and Lee County, TX

Hazard Mitigation Plan Updates Kickoff Meeting – Meeting Notes

Cedar Park Recreation Center 9:00am – 11:00am Wednesday, March 11, 2015

- Welcome and Introductions Mickey Reynolds (Texas Colorado River Floodplain Coalition [TCRFC]) welcomed everyone and introduced Cindy Engelhardt (Halff Associates).
 - Cindy explained the consultant team of JSW, Halff Associates, and Tetra Tech and provided the group with an overview of the Mitigation Plan Update process. TCRFC Basin and Planning Group was funded under the Pre-Disaster Mitigation Grant, which was awarded in Fall 2014 to update Hazard Mitigation Plans (HMP). Cindy referred to the fact sheet distributed by TCRFC that explains why each community needs to participate in the update process. Each participating community needs to sign in at the steering committee meetings to be recognized by FEMA as participating.
 - 2. Cindy encouraged Steering Committee members to invite other community groups, such as school districts and hospitals, to attend these meetings and participate in the plan development so they are eligible for additional FEMA grants. Mr. Jarred Thomas (Williamson County) asked if schools that are primarily in Round Rock can attach themselves to the county plan or can they only participate if they are located within a participating city. Laura Johnston (Tetra Tech) replied that they should participate in the area with the highest concentration of their facilities. They can join in any plan that they have facilities in, so they can join the County plan if appropriate.
 - 3. Cindy explained that while the previous 2011 plan included many counties in the region, FEMA now requires that each county create their own plan. The TCRFC counties were separated into three groups. Williamson and Lee County are in Group 2. The other counties and groups are shown on the TCRFC fact sheet.
 - 4. Cindy explained the roles and responsibilities of JSW, Halff, and Tetra Tech. Halff will complete the hazard risk assessment and GIS mapping of hazards. Cindy introduced Brian McNamara (Halff). Tetra Tech will complete the planning portions, including leading the steering committee meetings, and write the plan. Cindy introduced Laura Johnston and the rest of the Tetra Tech team (Krista Jack and Diane MacMillan).
 - 5. Cindy stated that she will distribute a spreadsheet and instructions to attendees to document their time for these meetings for the in-kind 25% soft match.

- 6. Laura requested introductions of each of the attendees and the organization or municipality they represent. See sign in sheet for a complete list of attendees. All attendees were from Williamson County or a community within Williamson County.
- 7. Laura provided an overview of the mitigation plan process, FEMA requirements, and the benefits to the counties and participating communities. Laura stated that a partnership with FEMA and the state is important to the planning and implementation of the HMP. Representatives from FEMA Region 6 and the State of Texas were invited to the meeting but could not attend.
- 8. Laura asked if anyone in the meeting participated in the development of the previous 2011 HMP. Jarred Thomas indicated that he was involved in the previous plan and that others in the meeting were also indirectly involved.
- Each attendee was provided a folder, tailored to their specific community and county, with handouts, a copy of the presentation slides, and contact information for the planning team.
- Laura reviewed the purpose of hazard mitigation. She noted that a community must have a current and approved HMP to be eligible for FEMA funds; however, our team focuses on developing plans that identify practical, implementable, politically viable, and fundable mitigation actions. Laura stated that the hazard mitigation actions from the current plan are robust. Plans need to be updated every 5 years and reviewed annually. Laura also stated that the HMP updates will focus only on natural hazards and will not include human-caused hazards.
- Laura reviewed the purpose and responsibilities of the Steering Committee. Steering Committee members:
 - 1. Are leaders involved in the development of the plan
 - 2. Provide guidance on their specific community
 - 3. Carry information from the meetings to their community
 - 4. Represent all community stakeholders (residents and businesses)
 - 5. Attend and actively participate in all three committee meetings (including this one)
- Laura discussed Planning Partners and Signators. Each Planning Partner must actively participate in the Steering Committee meetings and formally adopt the plan. The sign-in sheets will be attached to the plan to demonstrate participation.
- Laura presented a list of participating communities within each plan and asked if the list was
 comprehensive. Jarred Thomas asked if anyone else can participate in this plan or if it only included
 members of the TCRFC. Mickey responded that other jurisdictions may be added only if others have
 dropped out. The grant funding to prepare the plans specified only a limited number of communities.
 Cindy stated that she would communicate with Jarred directly to identify interested cities.
- Laura presented the goals for each meeting of the Steering Committee:
 - The goal of the kick-off meeting is to review the goals and objectives, briefly discuss past mitigation actions, discuss critical facilities, and review the natural hazards as ranked in the current plan;
 - 2. The goal of the second meeting is to present the results of the hazard risk assessment and to complete the hazard ranking process; and

- 3. The goal of the third meeting is to identify actions that mitigate the identified hazards and to rank those hazards.
- Laura discussed the project schedule.
- Laura reviewed distinction between goals, objectives, and mitigation actions.
 - 1. Laura gave attendees several minutes to review the existing goals and objectives in their current plans (provided in their folder) and make comments on these. She asked that if there are mitigation actions that the counties want to include, the attendees should make a note of those too as they go through this multi-month process because these actions will be presented and discussed in the third meeting.
- Laura reviewed the goals and objectives from the current regional HMP and stated the updated plan would only address natural hazards. Objective 3.1 would be modified to remove the reference to "man-made" hazards. Laura read through each goal and objective and asked for comments.
 - 1. The committee agreed that Objective 1.2 required wordsmithing to more accurately state the objective of Williamson County.
 - 2. Cindy suggested modifying the wording of Objective 1.3 to clarify "dangerous areas."
 - 3. Objective 1.4 was changed to "Protect critical infrastructure and key resources."
 - Jarred Thomas clarified that Williamson County participates in the NFIP but is not a CRS community. Laura asked if the plan should include Objective 2.1 for repetitive loss properties. Jarred replied that this objective should remain.
 - 5. The phrase "man-made" should be removed from Objective 3.1. Mr. Scott Kerwood (City of Hutto) asked for clarification of what constitutes a man-made hazard. Jarred explained the difference between a human-caused hazard (such as terrorism) versus a natural hazard that affects man-made structures or facilities. Scott suggested adding replacing "hazard" with "natural hazard" throughout the goals and objectives.
 - 6. Jarred stated that he would modify Objective 3.2 to add public resiliency.
 - 7. The committee suggested modifying Goal 5 to "Promote grown in a safe and sustainable manner." Jarred stated that he would modify the wording of this goal.
 - 8. Jarred said that he would mark up the goals and objectives and would send his copy to the Steering Committee attendees for their review and comment. He would then send the final version to Laura and Cindy for inclusion in the plan. Laura asked that *any changes or suggestions for goals and objectives should be submitted to the planning team by Friday, March 20, 2015.*
 - 9. Laura encouraged attendees after the meeting to review the handout containing sample mitigation goals, objectives, and actions as well as the <u>Mitigation Ideas</u> document from FEMA.
- Laura explained the handout entitled Project Implementation Worksheet, which documents mitigation actions prioritized in the current plan. Scott Kerwood asked why some actions were identified as "PAST". Laura clarified that these actions were carried over from the 2004 plan into the 2011 plan. Laura requested that attendees update the mitigation action status spreadsheet provided in the packet. This includes updating the project status and funding. There is no punitive action from FEMA for "incomplete" or "no longer applicable" mitigation actions update. Going forward, we want only practical, fundable, and implementable mitigation actions for the HMP update. More information on

the previous mitigation actions is in the 2011 TCRFC HMP, which is available on the TCRFC website. The Steering Committee members will send their updates to Jarred Thomas, who will send the complete list to Cindy and Laura for incorporation into the plan. Laura asked that the *updates to the mitigation action table are returned to the team by March 20, 2015.*

- Laura explained that FEMA requires a minimum of two mitigation actions for each hazard profiled in the plan and that they must be unique to each participating community.
 - 1. There will be community-specific and county-wide mitigation actions. The local jurisdiction prioritizes the community-specific mitigation actions. County-wide mitigation actions will be ranked by all those representing entities within the County.
 - 2. Mitigation actions must be supported by at least one goal/objective. However, mitigation actions can fall under multiple goals and objectives. Mitigation actions are more likely to be funded if under more than one goal/objective.
- Laura reviewed the critical facilities analysis.
 - There was a brief discussion on the definition of "Critical Facilities." Laura shared the Community Rating System's (CRS) definition of Critical Facilities because there is no definition of critical facilities in the current regional HMP nor the State of Texas HMP. Jarred indicated that he would look for the definition of critical facilities typically used in Williamson County plans and provide it to Laura.
 - 2. Laura has a draft list of critical facilities obtained from FEMA's HAZUS defaults but this needs to be updated. Laura two copies of the list of critical facilities in Williamson County to Jarred Thomas, who will distribute them as necessary. Laura stated that the county may have a more complete list of facilities and to add these facilities to the list as necessary. Laura asked that the committee *review/update the list and return to Laura in the next six weeks*.
 - 3. Laura stated that this updated information is needed to map the critical facilities for each jurisdiction to determine if these facilities are located in high risk areas and how they overlap with hazards. FEMA requires the identification of critical facilities in the HMP. Cindy will provide the mapped information to the counties once completed as this detailed list of critical facilities will not be included in the HMP.
 - 4. The committee was concerned that the critical facilities would be listed or shown in the plan in enough detail that the public would be able to identify their locations. Laura and Cindy stated that the map showing the critical facilities in the county would not provide details on the locations but would only give a very general idea of where the facilities are located with respect to natural hazards, such as floodplains. Furthermore, the maps of critical facilities would not be interactive so the public could not gain additional information by zooming in on the location.
 - 5. Mr. Michael Lafferty (City of Hutto) asked about facilities that are currently under construction. Laura asked that information regarding the location and valuation (if known) be sent to her because that data would not be in the assessor's data base.
- Laura reviewed the next steps: (1) capabilities assessment; (2) hazard analysis; and (3) community participation and survey.
 - 1. Laura provided an overview of capabilities assessment. Jeremy Kaufman is Tetra Tech's lead for this element. He will be contacting each of the participating jurisdictions. Tetra Tech will

initiate online research and then contact the local communities to further document and verify the current resources of each county/community. This is used to determine the strengths and opportunities related to the community's ability to implement the future mitigation actions.

- 2. Halff Associates will conduct the hazards analysis in the next few months. During the next (second) meeting, the results of the hazards analysis will be presented and the attendees will rank these hazards during next meeting.
- 3. Laura discussed how community participation (including the online survey) is an integral part of this HMP update process. Laura discussed the benefits of full community participation in order to produce a true community plan.
 - The online surveys are already live and consists of 35 questions. There are separate surveys for each county. The survey were set up for community input; the links to the surveys were provided in the handout packets.
 - Need to get the word out into the communities. Suggest to put on local websites, TCRFC's website, mention in meetings, post announcement, word of mouth, etc.
 - Jarred Thomas commented that social media was very effective in Williamson County.
 - Laura passed out a copy of the online survey. Jarred requested that Tetra Tech add the communities of Andice and Serenada to the list of communities in Williamson County.
- Jarred Thomas asked about documenting in-kind work by the County and community representatives. Cindy replied that she would provide a meeting summary and a spreadsheet for tracking all work conducted by the committee members.
- Laura reviewed the action items for the Steering Committee members, including:
 - 1. Review/update goals and objectives by March 20, 2015
 - 2. Update mitigation action table with current status of actions by March 20, 2015
 - 3. Publicize community survey link to community through website posting and other media
 - 4. Community points of contact will review and update as necessary the list of critical facilities and return to Laura in 6 weeks.
- The date for the next meeting of the Steering Committee has not been determined but is anticipated to be in May/April. Meeting details will be forthcoming.
- Adjournment

Hazard Mitigation Plan Updates for Bastrop, Fayette, and Lee Counties

Steering Committee Kickoff Meeting

Wednesday, March 25, 2015

9:00 AM

<u>Agenda</u>

- 1. Welcome and Introductions
- 2. Steering Committee Purpose and Responsibilities
- 3. Plan Partners and Signators
- 4. Purpose and Goals of the Update Process
- 5. Review and Amend Mitigation Goals and Objectives (in packet)
- 6. Review Mitigation Actions from TCRFC Hazard Mitigation Plan (in packet)
- 7. Critical Facilities Discussion
- 8. Next Steps
 - a. Capabilities Assessment
 - b. Hazard Analysis Review
 - c. Community Participation and Survey (in packet)
- 9. Next meeting date ???
- 10. Adjournment

SIGN - IN ample on other sheet Sschneider @ aiddings, net City of Smithville | MMAyeree Ci. Smithville. tx. US frmen efee @ lityof Lg.com. frankmenefee@cmaaccess.com. citymanager@ci.smithville.tx.us Jrost & Citylof19. com citysecretary@cityoflg.com; citysecretary@cityofig.com; mbunte@ci.smithville.tx.us; b.page@ci.smithville.tx.us <u>ipage@ci.smithville.tx.us;</u> Email mike.kahanek@lcra.org; tanderson@cityoflg.com March 24, 2015 shawnr@cityoflg.com; City of La Grange COMMUNITY City of Smithville Giddings FIRST NAME | COUNTY Bastrop Bastrop Bertrep Fayette Fayette Fayette Bastrop Bastrop Bastrop Bastrop Fayette Fayette Fayette Lee Michael Sbencer Shawn Ronnie Brenda Robert Travis Frank Janet Mark Mike Jack Lisa Jeff LAST NAME Schneider Menefee, Jr. MAUgere Anderson Page, Jr. Schuelke Kahanek Oltmann Moerbe Tamble Raborn Bunte Page Rost •

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 3B

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	Email	SIGN - IN
Beckett	Clara	Bastrop	Bastrop County	Clara.Beckett@co.bastrop.tx.us;	
Box	Vickie	Bastrop	Bastrop County	vickie.box@co.bastrop.tx.us;	on other sueet.
Fisher	Michael	Bastrop	Bastrop County	emc@co.bastrop.tx.us;	ANC from
Monthly Inc.					
CLAMPEFB2	BLANC	2454002	MASIREZ COUNTY	blatte, claur flore co. bustrots. us	Fru a Clud.
Talbot	Mike	Bastrop	City of Bastrop	mtalbot@cityofbastrop.org;	
Bowers	Ted	Bastrop	City of Bastrop	tbowers@cityofbastrop.org;	201CBM05
Job	Trey	Bastrop	City of Bastrop		-
McCollum	Melissa	Bastrop	City of Bastrop	mmccollum@cityofbastrop.org;	
Adcock	Steve	Bastrop	City of Bastrop	chiefadcock@cityofbastrop.org;	Strad
Chavez	Tracey	Bastrop	City of Bastrop	tchavez@cityofbastrop.org	
Cantrell	a utuell Sunne	Rustary .	Bustrop	DEM Johnna Cantull Colos, Texas	. sol D mill Author
ALTGELT	Janés	BASTROP	Gry or Bastag	BASTROP Gry of BASTROP ALTEELT Scinger BASTROP. ORG	F. Awer !

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 3B March 24, 2015

CRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 3B	March 24, 2015

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	Email	SIGN - IN
knox	Jerry	Fayette	City of Carmine	carmine@industryinet.com;	
Lynch	Rachael	Fayette	City of Carmine	carmine@industryinet.com:	
Lacy	Kerry	Bastrop	City of Elgin	<u>klacy@ci.elgin.tx.us</u>	
Alvarez	Lucretia	Bastrop	City of Elgin	lalvararez@ci.elgin.tx.us	
Van Landinghar Stacey	r Stacey	Bastrop	City of Elgin		
Cazares	Jim James	Bastrop	City of Elgin	jcazares@ci.elgin.tx.us	on other sheet
Cooke	Gary	Bastrop	City of Elgin	gcooke@ci.elgin.tx.us;	
Ver	Jennes	Ferette	City of Flaturia		All 2 Ird
WHITTEN	Mike	FAYGHE	City of FLATONIA	MM MWHITTEN ADDEN BADL.COM	NHU Mater
Milson	Bryan	۲ Fayette	City of Flatonia		
Burleson Mice	Jozz Terr	Fayette	City of Flatonia	fireishare Sheglobal. net	John Bullion I
Robinson	Gregory	Fayette	City of Flatonia	grobinson@ci.flatonia.tx.us;	Dregory Robinson
Brunner	Melissa	Fayette	City of Flatonia	mbrunner@ci.flatonia.tx.us;	(
Dixon	Scott	Fayette	City of Flatonia	<u>manager@ci.flatonia.tx.us;</u>	full S= (d-

TCRFC Hazard Mitigation Plan Update - Kickoff Meeting - Group 3B March 24, 2015

LAST NAME	FIRST NAME	COUNTY	COMMUNITY	Email	SIGN - IN
Janecka	Edward	Fayette	Fayette County	ed.janecka@co.fayette.tx.us;	
Kubecka	James	Fayette	Fayette County	james.kubecka@co.fayette.tx.us;	
Carrigan	Janet	Fayette	Fayette County	janet.carrigan@co.fayette.tx.us;	on other sucet
Moore	Dawn	Fayette	Fayette County	dawn.moore@co.fayette.tx.us;	

Bastrop, Fayette, and Lee Counties, TX

Hazard Mitigation Plan Updates Kickoff Meeting – Meeting Notes

TDAS Building, Bastrop, TX 9:00am – 11:00am Wednesday, March 25, 2015

- Welcome and Introductions Mickey Reynolds (Texas Colorado River Floodplain Coalition [TCRFC]) welcomed everyone and introduced Cindy Engelhardt (Halff Associates).
 - Cindy stated that the consultant team consists of JSW, Halff Associates, and Tetra Tech, then provided the group with an overview of the Hazard Mitigation Plan (HMP) Update process. The TCRFC Basin and Planning Group was funded under a Pre-Disaster Mitigation Grant, which was awarded in fall 2014 to update the 2011 HMP. Cindy referred to the fact sheet distributed by TCRFC that explains why each community needs to participate in the update process. Each participating community needs to sign in at the steering committee meetings to be recognized by FEMA as participating.
 - 2. Cindy stated that she will distribute a spreadsheet and instructions to attendees to document their time for these meetings for the in-kind 25% soft match.
 - 3. Cindy encouraged Steering Committee members to invite other community groups, such as school districts and hospitals, to attend these meetings and participate in the plan development so they are eligible for additional FEMA grants.
 - 4. Cindy explained that while the previous 2011 plan included many counties in the region, FEMA now requires that each county create their own plan. The TCRFC counties were separated into three groups. This meeting is designated for participating jurisdictions in Group 3; however there are representatives from other jurisdictions that were unable to attend earlier meetings for their group. The other counties and their corresponding grouping are shown on the TCRFC fact sheet.
 - 5. Cindy explained the roles and responsibilities of JSW, Halff, and Tetra Tech. Halff will complete the hazard risk assessment and GIS mapping of hazards. Cindy introduced Brian McNamara (Halff). Tetra Tech will complete the planning portions, including leading the steering committee meetings, and write the plan. Cindy introduced Laura Johnston and Krista Jack from the Tetra Tech team.
 - 6. Laura requested introductions of each of the attendees and the organization or municipality they represent. See sign in sheet for a complete list of attendees and their jurisdictions.

- 7. Laura provided an overview of the mitigation plan process, FEMA requirements, and the benefits to the counties and participating communities. Laura stated that a partnership with FEMA and the state is important to the planning and implementation of the HMP. Representatives from FEMA Region VI and the State of Texas were invited to the meeting; FEMA representatives could not attend but Johnna Cantrell, the State Hazard Mitigation Officer with the Texas Division of Emergency Management (TDEM) was in attendance.
- Laura asked if anyone in the meeting participated in the development of the previous 2011 HMP. Six attendees indicated that they were involved in the previous plan and that others in the meeting were also indirectly involved.
- Each attendee was provided a folder, tailored to their specific community and county, with handouts, a copy of the presentation slides, and contact information for the planning team.
- Laura reviewed the purpose of hazard mitigation. She noted that a community must have a current and approved HMP to be eligible for FEMA funds; however, our team focuses on developing plans that identify practical, implementable, politically viable, and fundable mitigation actions. Laura stated that the hazard mitigation actions from the current plan are robust. Plans need to be updated every 5 years and reviewed annually. Laura also stated that the HMP updates will focus only on natural hazards and will not include human-caused hazards.
- Laura reviewed the purpose and responsibilities of the Steering Committee. Steering Committee members:
 - 1. Are leaders involved in the development of the plan
 - 2. Provide guidance on their specific community
 - 3. Carry information from the meetings to their community
 - 4. Represent all community stakeholders (residents and businesses)
 - 5. Attend and actively participate in all three committee meetings (including this one)
- Laura discussed Planning Partners and Signators. Each Planning Partner must actively participate in the Steering Committee meetings and formally adopt the plan. The sign-in sheets will be attached to the plan to demonstrate participation.
- Laura presented a list of participating communities within each plan. She explained that participation is required in order to officially adopt the plan.
- Laura presented the goals for each meeting of the Steering Committee:
 - 1. The goal of the kick-off meeting is to review the goals and objectives, briefly discuss past mitigation actions, discuss critical facilities, and review the natural hazards as ranked in the current plan;
 - 2. The goal of the second meeting is to present the results of the hazard risk assessment and to complete the hazard ranking process; and
 - 3. The goal of the third meeting is to identify actions that mitigate the identified hazards and to rank those hazards.
- Laura discussed the project schedule.
- Laura reviewed the distinction between goals, objectives, and mitigation actions.
 - 1. Laura gave attendees several minutes to review the existing goals and objectives in their current plans (provided in their folder) and make comments on these. She asked that if there

are mitigation actions that the counties want to include, the attendees should make a note of those as they go through this multi-month process because these actions will be presented and discussed in the third meeting.

- Laura reviewed the goals from the current regional HMP and stated the updated plan would only address natural hazards. Objective 3.1 would be modified to remove the reference to "man-made" hazards. The following comments were from the discussion on the list of goals and objectives.
 - 1. Mike Fisher (Bastrop County) asked why "man-made" would be deleted. Laura explained that the current contract is only for natural hazards; the funding for this program and plan was for only natural hazards since it is based on FEMA's definition of "all-hazards" which excludes hazards created by human actions.

Spencer Schneider (City of Giddings) asked if a dam is blown up if this is covered under this plan. Laura explained that the distinction between "natural" and "human-caused" is what caused the disaster. For example, hazardous material (HAZMAT) spills, pipeline breaks, and active shooters are examples of human-caused disasters and would not be profiled.

Johnna Cantrell (TDEM) asked if the jurisdictions could include man-made hazards in their plan if they wanted them. Laura responded that the communities can include human-caused hazards if they wish to and that Tetra Tech can provide a blank template and create placeholder for any man-made hazards at the jurisdiction's request.

Janet Carrigan (Fayette County) said that she will need to look at the contract because pipeline development is affecting many jurisdictions right now. Johnna encouraged Janet to look at the contract and review. Mickey thought the language in the contract was FEMA-directed. Laura said she will confer with Jeff Ward this afternoon and either Mickey or Jeff will get back to the attendees about the issue of natural hazards only under this contract and grant.

Janet expressed concern that jurisdictions may not accept the plan if man-made hazards are excluded. Spencer asked if other groups (Group 1 and Group 2) during their first meetings had concerns about the exclusion of man-made hazards. Laura said that this issue has been discussed during the other meetings but the conversation was not as extensive as the conversation in this meeting.

Janet asked if dam failure was due to man-made activity, would it be covered under this plan. Laura confirmed it would be, because the effect of the dam failure, regardless of the cause, is the same. Ted Bowers (City of Bastrop) mentioned that during previous hurricanes affecting coastal Texas communities, the weather didn't impact his jurisdiction, however the influx of traffic and displaced persons from south Texas did impact his community. He said he doesn't understand how this contract excluded man-made hazards.

Ted asked if the State and FEMA will review the plans. Johnna confirmed this they would. Laura explained that the jurisdictions can include man-made hazards but this would not be considered during approval of the plan. Johnna will review the requirements and will get back to Mickey or Laura. Johnna encouraged the communities to include what they want in their plan. Johnna further stated that the jurisdictions' Emergency Management Plan is a different plan than this HMP and is under a separate grant. The Emergency Management Plans include man-made hazards.

- 2. Mike Whitten (City of Flatonia) asked if there is a part of this HMP that "exercises" the plan. He asked how often the plan is exercised. Laura explained that implementation of the mitigation action are considered "exercising" of this plan. There are short-, medium- and long-term mitigation actions included in the plan, which will be ranked. These actions are proactive, pre-disaster mitigation actions; this is not a response plan. Laura suggested the attendees review the current 2011 HMP's mitigation action table to see how this plan is implemented. Johnna said tabletop exercises can pull in the list of mitigation actions from this HMP to discuss how to better prepare the communities prior to a natural disaster. Janet (Johnna) explained the HMP is a "roadmap" to better protect a community through preparation activities.
- 3. A representative from each jurisdiction will mark up the goals and objectives based on feedback from their Steering Committee jurisdictions. They will send their marked-up version to Laura and Cindy for inclusion in the plan. Laura asked that *any changes or suggestions for goals and objectives should be submitted to the planning team by Monday, April 13, 2015.* Cindy will provide electronic copies of these goals and objectives. The representatives identified include:
 - Tom Wilson and Vicky Box (Bastrop County)
 - Delynn Peschke (Lee County)
 - Janet Carrigan (Fayette County)
 - Laurie McClinnon (Jackson County) (Laure is not present today; she was in attendance at an earlier meeting)
 - Brian McNamara (Colorado County) (Brian works for Halff Associates)
- 4. Scott Dixon (City of Flatonia) encouraged all attendees to think about what mitigation actions would be associated with these goals and objectives. Laura explained that the team will make sure all mitigation actions fall under a goal/objective further along in the process.
- Laura encouraged attendees after the meeting to review the handout containing sample mitigation goals, objectives, and actions as well as the <u>Mitigation Ideas</u> document from FEMA.
- Laura explained the handout entitled Mitigation Action/Project Implementation Worksheet, which documents mitigation actions prioritized in the current plan. Laura requested that attendees update the mitigation action status spreadsheet provided in the packet. This includes updating the project status and funding. There is no punitive action from FEMA for "incomplete" or "no longer applicable" mitigation actions update. Going forward, we want only practical, fundable, and implementable mitigation actions for the HMP update. More information on the previous mitigation actions is in the 2011 TCRFC HMP, which is available on the TCRFC website. The Steering Committee members will send their updates to the same contacts designated for the updated goals/objectives for the counties, who will send the complete list to Cindy and Laura for incorporation into the plan. Laura asked that the *updates to the mitigation action table are returned to the team by April 13, 2015.*
- Laura explained that FEMA requires a minimum of two mitigation actions for each hazard profiled in the plan and that they must be unique to each participating community.
 - 1. There will be community-specific and county-wide mitigation actions. The local jurisdiction prioritizes the community-specific mitigation actions. County-wide mitigation actions will be ranked by all those representing entities within the County.

- 2. Mitigation actions must be supported by at least one goal/objective. However, mitigation actions can fall under multiple goals and objectives. Mitigation actions are more likely to be funded if under more than one goal/objective.
- Laura reviewed the critical facilities analysis.
 - There was a brief discussion on the definition of "Critical Facilities." Laura shared the Community Rating System's (CRS) definition of Critical Facilities. Laura asked Johnna if she can send her the State's definition of "critical facilities."
 - 2. Laura has a draft list of critical facilities obtained from FEMA's HAZUS defaults but this list needs to be updated. Laura distributed two copies of the list of critical facilities for each county present today to the county contacts. Laura stated that the county may have a more complete list of facilities and to add these facilities to the list as necessary. Laura asked that the county contacts designed under the goals/objectives discussion *review/update the list and return to Laura in the next six weeks (by Wednesday, May 6, 2015).*
 - 3. Laura stated that this updated information is needed to map the critical facilities for each jurisdiction to determine if these facilities are located in high risk areas and how they overlap with hazards. FEMA requires the identification of critical facilities in the HMP. Cindy will provide the mapped information to the counties once completed as this detailed list of critical facilities will not be included in the HMP.
 - 4. Janet confirmed Fayette County already has a comprehensive list of critical facilities. Johnna said in the State HMP, critical facilities information is included as an attachment to the plan.
 - 5. Laura explained that the map and plan showing the critical facilities in the HMP would not provide details on the locations of the critical facilities but would only give a very general idea of where the facilities are located with respect to natural hazards, such as floodplains. Laura said the addresses are only for mapping purposes but are not included in the plan. There was a request from the attendees that a map NOT be provided in the HMP. Laura explained that this can be done but the information is still needed for the analysis. Laura asked that each county representative inform her whether or not they want the overview map to be eliminated in their plan.
 - 6. Mike Fisher asked about critical facilities that are inside the jurisdiction but not under their control (university operations, private facilities). Laura said to include school districts, major employers, large state parks, etc. Johnna agreed that they should be included, for example if there is flooding around a school. Laura and Johnna encouraged these jurisdictions to reach out to other community stakeholders to participate in this planning process. Laura said that one action could be to encourage stakeholders to be aware of and help implement the mitigation action. Robert Tamble (City of Smithville) stated that counties or municipalities can create a mitigation action to see if critical facilities have their own HMP and coordinate efforts between their plan and the jurisdiction's plan.
- Laura reviewed the next steps of the HMP update: (1) capabilities assessment; (2) hazard analysis; and
 (3) community participation and survey.
 - 1. Laura provided an overview of capabilities assessment. Jeremy Kaufman is Tetra Tech's lead for this element of the plan. He will contact each of the participating jurisdictions. Tetra Tech will

initiate online research and then contact the local communities to further document and verify the current resources of each county/community. This is used to determine the strengths and opportunities related to the community's ability to implement the future mitigation actions.

- Halff Associates will conduct the hazards analysis in the next few months. During the next (second) meeting, the results of the hazards analysis will be presented and the attendees will rank these hazards during the meeting.
- 3. Laura discussed how community participation (including the online survey) is an integral part of this HMP update process. Laura discussed the benefits of full community participation in order to produce a true community plan.
 - The online surveys are already live and consists of 35 questions. There are separate surveys for each county. The survey were set up for community input; the links to the surveys were provided in the handout packets.
 - Need to get the word out into the communities. Laura suggested that each jurisdiction put the survey link and general HMP information on local websites, TCRFC's website, mention in meetings, post announcement, word of mouth, etc.
 - Laura said she has hard copies of the online survey if any attendees wanted a paper copy today.
- Laura reviewed the action items for the Steering Committee members, including:
 - 1. Review/update goals and objectives by April 13, 2015
 - 2. Update mitigation action table with current status of actions by April 13, 2015
 - 3. Publicize community survey link to community through website posting and other media
 - 4. Community points of contact will review and update as necessary the list of critical facilities and return to Laura in 6 weeks (by May 6, 2015)
- The date for the next meeting of the Steering Committee has not been determined but is anticipated to be in June. Meeting details will be forthcoming.
- Adjournment

Bastrop, Fayette, and Lee County

Hazard Mitigation Plan Updates

Steering Committee 2nd Meeting

Wednesday, July 1, 2015

<u>Agenda</u>

- 1. Welcome and Introductions
- 2. Reminder: What is Hazard Mitigation and Why?
- 3. Reminder: Steering Committee Purpose and Responsibilities
- 4. Review of Completed Items
 - a. Final Goals and Objectives (in packet)
 - b. Updated Mitigation Actions (in packet)
 - c. Capabilities Assessment
- 5. Hazard Analysis
 - a. Community Participation and Survey Results (in packet)
 - b. Hazard Analysis Review
 - c. Hazard Ranking Exercise (in packet)
- 6. Mitigation Action Worksheet (in packet)
- 7. Next Meeting Date- September 9, 2015
- 8. Adjournment

38
ŝ
9
б
5
÷
2
P
5
ō
æ
ந
- <u></u>
ē
ē
2
٩.
Σ
Ŧ

Hazard Mitigation Group	Last Name	First Name	County	Organization	Title	Sign In	Date
38	Cazares	mil	Bastrop	City of Elgin	Emergency Management Coordinator	& Caraver	7/1/2015
38	Cooke	Gary	Bastrop	City of Elgin	Director of Planning and Development		7/1/2015
3B	Гасу		Bastrop	City of Elgin	City Manager	Hur)	7/1/2015
38	andingham		Bastrop	City of Elgin			7/1/2015
			1				
38	Bunte	Mark	Bastrop	City of Smithville	Mayor		7/1/2015
38	Maygere	Michael	Bastrop	City of Smithville			7/1/2015
38	Page, Jr.	Jack	Bastrop	City of Smithville	Public Works Director		7/1/2015
3B	Schuelke	Ronnie	Bastrop	City of Smithville	Code Enforcement Officer		7/1/2015
					City Manager	12 Tomb	7/1/2015
3B	knox	Jerry	Fayette	City of Carmine	Mayor		7/1/2015
38	Lynch	Rachael	Fayette	City of Carmine	City Secretary		7/1/2015

Group 3B
~
_
Round
Meeting
HMP

Mitigation		i					į
Group	Last Name	FIRST NAME	county	Organization	Itte	u uðis	Late
3B	Beckett	Clara	Bastrop	Bastrop County	Commissioner		7/1/2015
3B	Clampffer	Blake	Bastrop	Bastrop County			7/1/2015
3B	Dommert	Blake	Bastrop	Bastrop County			7/1/2015
38	Fisher	Michael	Bastrop	Bastrop County	Emergency Management Coordinator		7/1/2015
3B	erfeld	Julie	Bastrop	Bastrop County	GIS & Addressing Manager	MOUIDEN for Julis Sammer fold	7/1/2015
3B	Spooner	William	Bastrop	Bastrop County		Million	7/1/2015
3B	Wilson	Тотту	Bastrop	Bastrop County		0	7/1/2015
						(
3B	Adcock	Steve	Bastrop	City of Bastrop	PD Chief/EMC	X	7/1/2015
38	Altgelt .	James	Bastrop	City of Bastrop			7/1/2015
3B	Bowers	Ted	Bastrop	City of Bastrop	Building Official		7/1/2015
3B	Chavez	Tracey	Bastrop	City of Bastrop	Asst. to City Manager		7/1/2015
3B	qof	Trey	Bastrop	City of Bastrop	Director of Water/Waste Water		7/1/2015
38	McCollum	Melissa	Bastrop	City of Bastrop	Director of Planning & Development		7/1/2015
38	Talbot	Mike	Bastrop	City of Bastrop	City Manager		7/1/2015

HMP Meeting Round 2 Group 3B

	Hazard Mitigation Group	Last Name	First Name	County	Organization	Title	Sign In	Date
\cdot MeisaSystemCyckerenyCyckerenCyckerenCyckerenCyckerenCyckeren <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
n lonn Freete Cty of fatoria Sette Cty of fatoria Cty of fatoria Immes Experte Cty of fatoria Derin Freete Cty of fatoria Derin Freete Cty of fatoria No Freete Cty of fatoria Imme Freete Cty of fatoria	Ē					City Secretary		7/1/2015
KetterKetterCryor FisteriaCryor FisteriaCryor FisteriaImmesFayetteCryor FisteriaCuror FisteriaCuror FisteriaInFayetteCryor FisteriaConscientaMusequertaInFayetteCryor FisteriaConscientaMusequertaInFayetteCryor FisteriaConscientaMusequertaInFreiseCryor FisteriaConscientaMusequertaInFreiseCryor FisteriaExterioMutechanaInFreiseCryor I di GrangeExterMutechanaInFreiseCryor I di GrangeExterMutechanaInFreiseCryor I di GrangeExterMutechanaInFreiseCryor I di GrangeCryor I di GrangeMutechanaInFreiseCryor I di GrangeCryor I di GrangeMutechanaInListFreiseCryor I di GrangeCryor I di GrangeInListFreiseCryor I di GrangeCryor I di GrangeInListFreiseCryor I di GrangeCryor I di GrangeInListFreiseCryor I di GrangeCryor I di GrangeInFreiseCryor I di GrangeCryor I di GrangeIn	ā				City of Flatonia			7/1/2015
James Favetie Cuy of Flationia Fevran Favetie Cuy of Flationia Form Favetie Cuy of Flationia In Gregory Favetie Cuy of Flationia In Free Cuy of Flationia Contelment In Free Cuy of Flationia Contelment In Free Cuy of Flationia Contelment In Free Cuy of Flationia Cole Officer In Free Cuy of Flationia Cole Officer In Free Cuy of Flationia Cole Officer In Free Cuy of La Grange EMC In Free Cuy of La Grange EMC In Free Cuy of La Grange Monoliger In Easter Easter Monoliger In Easter <td< td=""><td>ō</td><td></td><td></td><td></td><td></td><td>City Manager</td><td></td><td>7/1/2015</td></td<>	ō					City Manager		7/1/2015
Bryant Bertet Chro of Flatonia concinnant n Eregory Evente Chro of Flatonia n Eregory Evente Chro of Flatonia n Final Concortentia Anagrad Andread n Final Evente Chro of Flatonia alect Chro of Flatonia Machine alect Evente Chro of Flatonia n Evente <	<u>></u>							7/1/2015
Image Gregory Favor Export Code Officer Image Image Image Image Image Image Image Image Image Image Image Favor I	Σ					Councilman		7/1/2015
Image: Constant of the sector of the sec	<u> </u>	Ę				Code Officer	Lnegory Robinson	7/1/2015
Image: Section of the section of th							0	
Image: Control Problem EMC MULTAAA e.Jr. Frank Fayette City of La Grange EMC e.Jr. Frank Fayette City of La Grange EMAA e.Jr. Frank Fayette City of La Grange EMA alnet Fayette City of La Grange Masor Masor alnet Fayette City of La Grange Masor Masor alnet Fayette City of La Grange City Manager Masor baser Fayette City of La Grange City Manager Masor baser Fayette City of La Grange City Manager Masor beff Fayette City of La Grange City Manager Masor beff Fayette City of La Grange Bulding Inspector Masor Masor Masor leff Fayette City of La Grange Bulding Inspector Masor Masor Masor Masor leff Fayette City of La Grange Bulding Inspector Masor Masor Masor Masor Masor Masor Masor								
In Taxis Fayette City of La Grange EMC e, Jr. Frank Fayette City of La Grange File Marshal / Asst. City Manager latet Fayette City of La Grange Mayor latet Fayette City of La Grange Mayor latet Fayette City of La Grange Mayor latet Fayette City of La Grange City Secretary latet Fayette City of La Grange City Manager leff Fayette City of La Grange City Manager leff Fayette City of La Grange Building Inspector leff Fayette City of La Grange Building Inspector leff Fayette City of La Grange Building Inspector							(
e.Jr. Frank Expette City of La Grange Frie Marshal / Asst. City Manager Janet Fayette City of La Grange Mayor I Lisa Fayette City of La Grange Mayor Shawn Fayette City of La Grange City Manager I Lisa Fayette City of La Grange Mayor I Lisa Fayette City of La Grange City Manager I Lisa Fayette City of La Grange Mayor I Eff Fayette City of La Grange La Grange La Grange I Eff Fayette City of La Grange Building Inspector La Grange La Grange I Eff Fayette City of La Grange Building Inspector La Grange	A					EMC	WithCl	7/1/2015
Janet Fayette City of La Grange Mayor 1 Lisa Fayette City of La Grange City of La Grange 1 Lisa Fayette City of La Grange City of La Grange City of La Grange 1 Shawn Fayette City of La Grange City Manager Image: City of La Grange Image: City of La Grange 1 Jeff Fayette City of La Grange Building inspector Image: City of La Grange Image: City of La Grange <td>Σ</td> <td></td> <td></td> <td></td> <td></td> <td>Fire Marshal / Asst. City Manager</td> <td></td> <td>7/1/2015</td>	Σ					Fire Marshal / Asst. City Manager		7/1/2015
Jest Etayette City Secretary Shawn Fayette City Secretary Shawn Fayette City of La Grange Jeff Fayette City Anager Jeff Fayette Diading Inspector Jeff Fayette Building Inspector Jeff Fayette Building Inspector Jeff Fayette City of La Grange Jeff Fayette Building Inspector	Σ					Mayor		7/1/2015
Shawn Fayette City Manager Jeff Edyte City Manager Jeff Fayette City Manager Jeff Edyte Building Inspector Jeff Environment Environment Jeff Envilontent Environment <td>ō</td> <td></td> <td></td> <td></td> <td></td> <td>City Secretary</td> <td></td> <td>7/1/2015</td>	ō					City Secretary		7/1/2015
left Edyste Dilding Inspector left Edyste Building Inspector i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i	Ra					City Manager		7/1/2015
	Ro					Building Inspector		7/1/2015

HMP Meeting Round 2 Group 3B

Date	7/1/2015	7/1/2015	7/1/2015	7/1/2015								
Sign In	And Can	0	W low in all									
Title	FPA/EMC	County Judge	Commissioner	911 Coordinator/GIS								
Organization	Fayette County	Fayette County										
County	Fayette	Fayette	Favette	Fayette								
First Name	Janet	Edward										
Last Name	Carrigan	Janecka										
Hazard Mitigation Group	3B	38	381		4							

38
iroup
2 6
Round
Meeting
HMP

	Date	7/1/2015	7/1/2015	7/1/2015	7/1/2015		7/1/2015	7/1/2015	7/1/2015		7/1/2015	7/1/2015	7/1/2015	7/1/2015	7/1/2015	
	Sign In		-	for Solmeylas				Charlotte Hooper				V.	(Duf 146	/		
HMP Meeting Round 2 Group 3B	Title	Mayor	City Manager	Code Compliance Officer	Director of Public Works		City Secretary	Mayor	Dd		County Judge / FPA	Commissioner		Commissioner	Judge Administrative Assistant	
	Organization	City of Giddings	City of Giddings	City of Giddings	City of Giddings		City of Lexington	City of Lexington	City of Lexington		Lee County	Lee County		Lee County	Lee County	
	County	lee	lee	lee	lee		lee	lee	lee		lee	lee	Lee	lee	lee	
	First Name	Fred	Ricky	Spencer	Jeffrey		Pam	Charlotte	Vunhol		Paul E.	Douglas			Hilary	
	Last Name	Jones	Jorgensen	Schneider	Zgabay		Сох	Hooper	Wooldridge		Fischer	Hartfield	Peschke	Pitts	Kieschnick	
5 	Hazard Mitigation Group	2A	2A	2A	2A		2A	ZA	ZA		ZA	2A		2A	2A	

38
Group
2
Round
Meeting
ЧМН

Date	7/1/2015	7/1/2015	@ 7-1-15									
Sign In	C. Valley	S. Male	ave Rodule									
Title			Service planner									
Organization	Mustars Ridge	Marner Trope.	City of Hutto									
County	Trails	Towis	ह									
First Name	Cardun	Sheri	Erika									
Last Name	Malleio	mack	Ragsolale									
Hazard Mitigation Group												

Bastrop, Fayette, and Lee Counties, TX

Hazard Mitigation Plan Update Steering Committee Meeting – Meeting Notes Wednesday, July 1, 2015

- Welcome and Introductions Mickey Reynolds (Texas Colorado River Floodplain Coalition [TCRFC]) welcomed everyone and introduced Laura Johnston (Tetra Tech). Each member of the Committee was provided a folder with handouts and a copy of the presentation slides.
 - TCRFC Annual Meeting is July 31.
 - Laura distributed a spreadsheet and instructions to attendees to document their time for these meetings for the in-kind 25% soft match. She explained what time should be included and asked attendees to add time previously spent that has not already been documented.
 - Laura introduced the rest of the team present today from Halff Associates and Tetra Tech.
 - All attendees introduced themselves.
- Ms. Johnston reviewed the purpose of the mitigation plan update, FEMA requirements, and the benefits to the counties and participating municipalities.
 - Ms. Johnston stated that the plan needed to be reviewed annually and updated every 5 years to remain compliant with the Federal Disaster Mitigation Act.
 - Laura provided an overview of the mitigation plan process, FEMA requirements, and the benefits to the counties and participating communities. Laura stated that a partnership with FEMA and the state is important to the planning and implementation of the HMP.
 - Laura explained that while the previous 2011 plan included many counties in the region, FEMA now requires that each county create their own plan. The TCRFC counties were separated into three groups. The counties and cities in today's meeting are a part of Group 2. The other counties and groups are shown on the TCRFC fact sheet.
 - These reports will be submitted in late 2015/early 2016.
- Ms. Johnston reviewed the purpose and responsibilities of the Steering Committee, Planning Partners, and Signators. She encouraged the attendees to bring the information back from the three planning meetings to the communities. Each Planning Partner must formally adopt the plan.
- Ms. Johnston directed the attendees to look at the handout with the mitigation goals and objectives that were identified during the kick-off meeting and finalized by after receiving input from the Steering Committee.
- Ms. Johnston directed attendees to the mitigation actions handout. She said if the jurisdiction's information is missing then the consultants didn't receive information from the jurisdiction. She asked attendees from those communities to fill out the sheet today during the meeting and give to Ms. Johnston by the end of today's meeting. Janet Carrigan (Fayette County) provided the handout to Ms. Johnston. Robert Tamble (City of Smithville) provide the handout to Ms. Johnston. Ms. Johnston still needs this information from Bastrop County and the City of Mustang Ridge. Tom Wilson (Bastrop County) will check in with Mike Fischer and other staff.

- Capability Assessment Ms. Johnston said this is required element per FEMA. Most jurisdictions should have received a call from Tetra Tech asking questions for this assessment. Jeremy Kaufman (Tetra Tech) still needs to reach some jurisdictions. Ms. Johnston asked attendees to please respond to Mr. Kaufman if he contacts them.
- Ms. Johnston reviewed the community survey results. Because responses were low, the survey will be kept open for another 30 days and asked attendees to get the word out to the community to encourage greater participation.
 - Ms. Carrigan asked if it was alright to post on the jurisdiction's Facebook page. Cindy Engelhardt (Halff Associates) said this was great idea. Ms. Carrigan said that since Fayette County has a large senior population, she said paper copies would be useful. Ms. Johnston explained the question about "regular access" to the Internet because it provides information on whether the population can receive warnings and other information via the Internet/email.
 - Ms. Johnston read out loud some of the survey feedback. She passed out feedback results to Bastrop County, Lee County, and Fayette County. She encouraged attendees to review the results and look at what hazards are highlighted by the citizens.
 - Ms. Johnston reviewed the community participation survey results for hazards for the jurisdictions with survey results. These will be important to consider when ranking the hazards later on during this meeting.
 - Ms. Carrigan said recent events (such as high winds and tornados) may have influenced the survey results. Ms. Johnston agreed and explained both local and national events can influence public perception of the risk of various hazards.
- Ms. Johnston reviewed the rest of the meeting will include a presentation on the hazard analysis and risk assessment; a hazard ranking exercise (included in the packet); and the anticipated outcome for each jurisdiction.
- Ms. Engelhardt presented a summary of the hazard identification and risk assessment that will be included in the plan. The hazard assessments include identification of areas at risk from the hazard, historical occurrences, damage projections, and historical damages. More detailed information for each jurisdiction are provided in the packets.
- Two sources were used to help with the hazard profile and risk assessment:
 - HAZUS was used to run profiles for the jurisdiction for each hazard.
 - Historical records and information (mostly from NOAA) was used to estimate risk from various hazards
- For each hazard exposed value, estimated loss value and annualized percentage of loss are included for each hazard.
- Floods Ms. Engelhardt reviewed the flood hazard. Floodplain maps (digitized information) were used as available. She presented the 1% annual-chance floodplain and 0.2% annual-chance floodplain information for each community. She presented the structure count inside the floodplains. However the structure count may be inaccurate since it is from HAZUS. The structures are categorized by residential, commercial, and other. "Other" includes schools, agricultural structures, churches, government buildings, and other structures. She presented tables listing estimated risk in total percentage of assessed value in the floodplain and estimated losses (exposed value).
 - Ms. Carrigan asked if this information can be provided via email so she can use within her jurisdiction.
- Hurricanes and Tropical Storms HAZUS has information on the paths of these storms for over 100 years. The HMPs will include in the text portion of the plan information from recent events (including Tropical Storm Bill). Loss estimates for exposed values have been compiled for the communities.
- Dams and Levees USACE National Dam Inventory data was used for this hazard analysis.
 - Ms. Engelhardt encouraged attendees if they know of dams not listed to provide that information so this can be included and updated for the plan. The National Dam Inventory is not a complete listing of dams in the U.S.

- William Spooner (Bastrop County) said right now the TCEQ has an ongoing workshop on dam safety across the State of Texas.
- **Drought and Extreme Temperatures** Ms. Engelhardt showed how drought map for Texas has changed significantly since March 2012 (one of the worst droughts in recent history). She cautioned that because Texas is out of drought, the state is still at risk of drought. Agricultural losses due to drought are the largest consideration for this hazard.
- Severe Weather Hail, Winds, Thunderstorm This hazard was analyzed using NOAA historical records. Because the risks are being calculated off of historic information and based on documented insurance claims and reported damages, this must be considered going forward. Because some people don't report damages from these hazards, the reported losses may be underrepresented.
- **Tornado** Two scales (Fujita and Enhanced Fujita Scales) are used. Ms. Engelhardt said the information was from NOAA and was from decades ago and was probably considered high wind event.
- Wildfire Data from TXWRAP, CWP and other sources were used for wildfire hazard analysis. This is based on last 35 years of record. Tables based on TXWRAP list and ranks the population at risk to wildfire. Because many people don't report damage from fires, this estimated exposed value, this is likely underestimated.
- **Earthquake** There was an earthquake in the area in the late 1880s.
- Winter Weather Information is taken from NOAA and is based on damages from snow and ice.
 - Ms. Carrigan for her jurisdiction, the damage was actually from fire (from downed power lines due to a winter storm event).
- **Summary of Hazards** Ms. Engelhardt reviewed the hazard summary matrix including the values within each hazard.
- Ms. Johnston explained the hazard ranking exercise. This needs to be filled out for each community/jurisdiction.
 Ms. Johnston explained that FEMA and the State of Texas requires that all hazards must be profiled. She encouraged careful consideration for ranking. For example, thunderstorms have a high probability for occurring but the impact and dollar value loss may not be considered high.
 - The attendees spent approximately 15 minutes ranking the hazards for their community.
- Mitigation Action Worksheet Ms. Johnston reviewed the mitigation action worksheet that Bryan McNamara (Halff Associates) will send via email. Ms. Johnston clarified the process and the information necessary for each proposed action. Two mitigation actions are required for each hazard. If you rank a hazard as "not applicable" then actions are not necessary but the State of Texas can refute this ranking. This needs to be filled out and sent back to Ms. Johnston by July 31, 2015.
 - Some mitigation action may cover multiple hazards. For example, education and outreach on emergency management (aka what to do when a siren goes off), burying overhead utility lines, or obtain funding to build a new EOP would apply to many or all hazards.
 - Three potential alternatives are required by FEMA. Potential alternatives don't have to be preengineered, researched, etc. One alternative can be "no action."
 - Mitigation actions should be "actionable" actions which are practical, implementable, discrete actions.
 - Mitigation actions have to be specific to the individual community.
 - Spencer Schneider (City of Giddings) said if propose a mitigation action, would this be a liability in the future. Ms. Johnston said there are no punitive probabilities if a mitigation action was not implemented. Ms. Johnston stressed the jurisdictions should put down practical, realistic, and implementable mitigation actions for that community.
 - Mitigation actions are to reduce the exposed to hazards. Maintenance is not a mitigation action.
 However, wording or phrasing can shift a maintenance or preparedness action into a mitigation action.
 - Ms. Carrigan asked if this worksheet can provided electronically. Ms. Engelhardt and Ms. Johnston said it would be sent to the attendees within the next two days.

- In-progress (ongoing) mitigation actions can be included in this worksheet.
- FEMA likes near-, mid-, and long-term actions.
- Ms. Johnston reviewed the FEMA-required prioritization worksheet.
- Ms. Johnston stated that the Steering Committee will review each mitigation action at the next meeting. The mitigation actions will be ranked. The representatives of each municipality will rank only their own actions.
- It is best to start with the previous mitigation actions, ongoing, existing projects.
- Ms. Johnston encouraged communities to develop more than two mitigation actions, especially with high ranked hazards.
- Ms. Johnston collected all completed timesheets that have been filled out.
- Ms. Johnston discussed action items for the committee to complete and return to her before the next Steering Committee meeting. Ms. Engelhardt will provide the necessary documents and forms to meeting participants by email after the meeting. Action items include:
 - Capabilities assessment (please be responsive to Jeremy Kaufman if he contacts you)
 - List of mitigation actions for each community or municipality (completed and returned to Ms. Johnston by July 31, 2015)
- The date for the next meeting of the Steering Committee is set for September 9, 2015, from 9:00 to 11:00 AM.
- Adjournment

Bastrop, Fayette, and Lee Counties Hazard Mitigation Plan Update Steering Committee Meeting 3 Wednesday, September 9, 2015

9:00 AM

<u>Agenda</u>

- Welcome and Introductions
- Review and Reminders
 - What is Hazard Mitigation?
 - Steering Committee Purpose and Responsibilities
 - Capabilities Assessment
 - Mitigation Goals and Objectives (In Packet)
 - Final Hazard Ranking (In Packet)
- Review of Survey Results (Handouts)
 - Question #24 Results
- Mitigation Actions
 - General Guidelines and Requirements
 - Summary Table (In Packet)
- Review Goals and Objectives Any Changes Needed?
- Ranking of Mitigation Actions
- Next Steps
- Adjournment

je i
Ĕ
2
-
6
ŝ
ŝ
P
ñ
ĕ
é
2
+
88
à
В
ž
U.

2A Jones Fred Lee City of Giddings Mayor Pro 2A Jongensen Ricky Lee City of Giddings City Man 2A Schneider Spencer Lee City of Giddings Alternatic Technical/Code 2A Schneider Spencer Lee City of Giddings Alternatic Technical/Code 2A Japerson Jeffrey Lee City of Giddings Director of Put 2A Jeptres Lee City of Giddings Alternatic Technical/Code Director of Put 2A Jeptres Lee City of Lexington Director of Put Director of Put 2A Hooper Paul Lee City of Lexington Director of Put 2A Hooper Lee City of Lexington Director of Put 2A Hooper Lee City of Lexington County Judg 2A Hooper Lee City of Lexington County Judg 2A Hooper Lee City of Lexington County Judg	Organization Title	Signature	Date
Jorgensen Ricky Lee City of Giddings Schneider Spencer Lee City of Giddings Zgabay Jeffrey Lee City of Giddings Zgabay Jeffrey Lee City of Giddings Zoport Lee City of Ciddings Zoport Lee City of Lexington Hooper Johnny Lee Vooldridge Johnny Lee Kiescher Paul E. Lee Fischer Paul E. Lee Kieschnick Hilany Lee Peschke Delynn Lee Pitts Maurice Lee Pitts Maurice Lee	gs Mayor Pro Tem		9/9/2015
Schneider Spencer Lee City of Giddings Zgabay Jeffrey Lee City of Giddings Zer E E City of Giddings E E City of Ciddings E E E City of Ciddings E E E E City of Ciddings E E E E City of Lexington E Mooldridge Johnny Lee City of Lexington E Mooldridge Johnny Lee City of Lexington E Fischer Paul E. Lee City of Lexington E Fischer Douglas Lee Lee County E E Fischer	gs City Manager		9/9/2015
Zgabay Jeffrey Lee City of Giddings Image: Construction of the	gs AlternateTechnical/Code Compliance Officer		9/9/2015
Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of the standard Image: Constraint of	gs Director of Public Works		9/9/2015
Image: Cox Pain Lee City of Lexington Cox Pain Lee City of Lexington Hooper Charlotte Lee City of Lexington Hooper Charlotte Lee City of Lexington Wooldridge Johnny Lee City of Lexington Hooper Lee City of Lexington Image: City of Lexington Hattleid Johnny Lee City of Lexington Fischer Paul E. Lee Lee Hattleid Douglas Lee Lee Kieschnick Hilary Lee Lee Peschke Delynn Lee Lee Pitts Maurice Lee Lee Pitts Maurice Lee Lee			
Image: Cox Parm Lee City of Lexington Hooper Charlotte Lee City of Lexington Hooper Charlotte Lee City of Lexington Wooldridge Johnny Lee City of Lexington Wooldridge Johnny Lee City of Lexington Hooper Lee City of Lexington Image: City of Lexington Hooper Lee Lee City of Lexington Hartfield Douglas Lee Lee Hartfield Douglas Lee Lee Peschke Delynn Lee Lee Peschke Delynn Lee Lee Pitts Maurice Lee Lee Pitts Maurice Lee Lee			
CoxParmLeeCity of LexingtonHooperCharlotteLeeCity of LexingtonHooperUnhuyLeeCity of LexingtonWooldridgeJohnnyLeeCity of LexingtonWooldridgeJohnnyLeeCity of LexingtonHartleLeeLeeCity of LexingtonHartfieldLeeLeeLeeHartfieldDouglasLeeLee CountyHartfieldDouglasLeeLee CountyHartfieldDouglasLeeLee CountyHartfieldDelynnLeeLee CountyHartfieldDelynnLeeLeeHartfieldDelynnLeeLeeHartfieldDelynnLeeLee<			
Hooper Charlotte Lee City of Lexington Wooldridge Johnny Lee City of Lexington Wooldridge Johnny Lee City of Lexington Hartle Lee Lee City of Lexington Hartle Lee Lee City of Lexington Hartle Lee Lee Lee Kieschnick Hilary Lee Lee County Peschke Delynn Lee Lee County Pitts Maurice Lee Lee County Pitts Delynn Lee Lee County	ton City Secretary		9/9/2015
Wooldridge Johnny Lee City of Lexington Nooldridge Johnny Lee City of Lexington Hartield Lee Lee Lee Hartfield Douglas Lee Lee County Kieschnick Hilary Lee Lee County Peschke Delynn Lee Lee County Pitts Maurice Lee Lee County	Mayor	Charlotte Horsper	9/9/2015
Image: Sector in the sector	D	0	9/9/2015
ler Paul E. Lee County eid Douglas Lee County tele Lee County the Delynn Lee Lee County he Delynn Lee Lee County he Lee Lee County			
Fischer Paul E. Lee Lee County Hartfield Douglas Lee Lee County Kieschnick Hilary Lee Lee County Peschke Delynn Lee Lee County Pitts Maurice Lee Lee County			
Fischer Paul E. Lee Lee County Hartfield Douglas Lee Lee County Kieschnick Hilary Lee Lee County Peschke Delynn Lee Lee County Pitts Maurice Lee Lee County			
Hartfield Douglas Lee Lee County Kieschnick Hilary Lee Lee Lee Peschke Delynn Lee Lee Lee Pitts Maurice Lee Lee re	County Judge / FPA		9/9/2015
Kieschnick Hilary Lee Lee County Peschke Delynn Lee Lee County Pitts Maurice Lee Lee	Commissioner		9/9/2015
Peschke Delynn Lee Lee County É M.C. Pitts Maurice Lee Lee Lee County	Judge Administrative Assistant		9/9/2015
Pitts Maurice Lee County	É MC	the - Dal	9/9/2015
	Commissioner	_	9/9/2015

Last Name	First Name	County	Organization	Title	Signature	Date
Beckett	Clara	Bastrop	Bastrop County	Commissioner	(I madre)	9/9/2015
ff	Brenda Vickie	Bastrop	Bastrop County	Floodplain Administrator	WERDER (William)	9/9/2015
Clampffer	Blake	Bastrop	Bastrop County	Assistant EMC	Ilun Carla	9/9/2015
	Carolyn	Bastrop	Bastrop County	City Engineer	à	9/9/2015
Dommert	Blake	Bastrop	Bastrop County			9/9/2015
Fisher	Michael	Bastrop	Bastrop County	Emergency Management Coordinator		9/9/2015
Sommerfeld	Julie	Bastrop	Bastrop County	GIS & Addressing Manager		9/9/2015
Spooner	William	Bastrop	Bastrop County			9/9/2015
Wllson	Tommy	Bastrop	Bastrop County			9/9/2015
Adcock	Steve	Bastrop	City of Bastrop	PD Chief/EMC		9/9/2015
Altgelt	James	Bastrop	City of Bastrop		T. Avaca	9/9/2015
Bowers	Ted	Bastrop	City of Bastrop	Building Official	Jed C. Bowers	9/9/2015
Chavez	Tracey	Bastrop	City of Bastrop	Asst. to City Manager		9/9/2015
dol	Trey	Bastrop	City of Bastrop	Director of Water/Waste Water		9/9/2015
McCollum	Melissa	Bastrop	City of Bastrop	Director of Planning & Development		9/9/2015
Talbot	Mike	Bastrop	City of Bastrop	City Manager		9/9/2015

Hazard Mitigation Group	Last Name	First Name	County	Organization	Title	Signature	Date
3B	knox	Jerry	Fayette	City of Carmine	Mayor	2 and am	9/9/2015
3B	Lynch	Rachael	Fayette	City of Carmine	City Secretary	Derevel Lunde	9/9/2015
					N		
3B	Alvarez	Lucretia	Bastrop	City of Elgin	City Secretary		9/9/2015
3B	Cazares	Jim	Bastrop	City of Elgin	Emergency Management Coordinator	Hayaret	9/9/2015
3B	Cooke	Gary	Bastrop	City of Elgin	Director of Planning and Development		9/9/2015
3B	Lacy	Kerry	Bastrop	City of Elgin	City Manager		9/9/2015
3B	Van Landingham	Stacey	Bastrop	City of Elgin			9/9/2015
3B	Brunner	Melissa	Fayette	City of Flatonia	City Secretary		9/9/2015
ЗВ	Burleson	John	Fayette	City of Flatonia			9/9/2015
3B	Dixon	Scott	Fayette	City of Flatonia	City Manager	· fluit & 17	9/9/2015
38	lvy	James	Fayette	City of Flatonia		2	9/9/2015
3B	Milson	Bryan	Fayette	City of Flatonia	Councilman		9/9/2015
3B	Robinson	Gregory	Fayette	City of Flatonia	Code Officer	Logary Robinson	9/9/2015
3B	Whitten	Mike	Fayette	City of Flatonia			9/9/2015

-																		
Date	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015
Signature	no lass anna cur																	
Title	Commissioner	911 Coordinator/GIS																
Organization	Eayette County	Fayette County																
County	Fayette	Fayette																
First Name	James	Dawn																
Last Name	Kubecka Z	Moore																
Hazard Mitigation Group		3B																

Hazard Mitigation Group	Last Name	First Name	County	Organization	Title	Signature	Date
3B	Anderson	Travis	Fayette	City of La Grange	EMC	Than's Andre-	9/9/2015
3B	Menefee, Jr.	Frank	Fayette	City of La Grange	Fire Marshal / Asst. City Manager		9/9/2015
3B	Moerbe	Janet	Fayette	City of La Grange	Mayor		9/9/2015
3B	Oltmann	Lisa	Fayette	City of La Grange	City Secretary		9/9/2015
3B	Raborn	Shawn	Fayette	City of La Grange	City Manager		9/9/2015
3B	Rost	Jeff	Fayette	City of La Grange	Building Inspector		9/9/2015
3B	Bunte	Mark	Bastrop	City of Smithville	Mayor		9/9/2015
3B	Kahanek	Mike	Bastrop	City of Smithville	Mayor Pro Tem		9/9/2015
3B	M AUGERE Maygere	Michael	Bastrop	City of Smithville		What that	9/9/2015
3B	Page	Brenda	Bastrop	City of Smithville	City Secretary	100	9/9/2015
3B	Page, Jr.	Jack	Bastrop	City of Smithville	Public Works Director		9/9/2015
3B	Schuelke	Ronnie	Bastrop	City of Smithville	Code Enforcement Officer		9/9/2015
3B	Tamble	Robert	Bastrop	City of Smithville	City Manager	12. Tome	9/9/2015
						ç	
3B	Carrigan	Janet	Fayette	Fayette County	FPA/EMC	Aust Chry	9/9/2015
38	Janecka	Edward	Fayette	Fayette County	County Judge		9/9/2015

Bastrop, Fayette, and Lee Counties, TX

Hazard Mitigation Plan Update Steering Committee Meeting – Meeting Notes Wednesday, September 9, 2015

- Welcome and Introductions Mickey Reynolds (Texas Colorado River Floodplain Coalition [TCRFC]) welcomed everyone and introduced the planning team: Cindy Engelhardt (Halff Associates), Laura Johnston (Tetra Tech), and Krista Jack (Tetra Tech). See sign in sheet for a complete list of attendees.
 - Mickey explained that man-made was not a part of the contract and not covered under this project and plan.
 - Sign-in sheet and timesheets are required and necessary part of getting credit for participating (in-kind) in this project. Cindy handed out the timesheets and Laura requested everyone sign in for today's meeting. Janet Carrigan (Fayette County), Scott Dixon (City of Flatonia), and Gregg Robinson (City of Flatonia) asked about including time for floodplain changes and floodplain maps in relation to developing this plan. Laura explained that time spent related to ranking hazards, mitigation actions, and other actions applicable to the update of this plan has to be accrued during the period of performance. Robert Tamble (City of Smithville) asked if meeting with FEMA regarding site assessments were applicable to this project. Laura said that time is not applicable to this project because it is funded by another grant.
 - Each attendee was provided a folder, tailored to their specific community and county, with handouts, a copy of the presentation slides, and contact information for the planning team.
 - Representatives from the City of Giddings were not present at this meeting.
 - There are more hard copies of the survey if attendees want a copy.
 - This is the last of three meetings. After these series of meetings, the draft plan will be finalized and will be submitted to the State of Texas and subsequently submitted to FEMA. All 16 plans are planned to be submitted to the State of Texas by January 2016.
- Capabilities Assessment: Jeremy Kaufman (Tetra Tech) has reached out to the jurisdictions. Tetra Tech
 needs additional information from Fayette County, City of La Grange, and the City of Carmine. Janet
 Carrigan took all the packets for all three jurisdictions and will coordinate with Jeremy to get him the
 appropriate information.
- Laura reminded the attendees that some goals and objectives were edited based on feedback from the last meeting.
- Laura reviewed what hazard mitigation is and why this is important; the steering committee purpose and responsibilities; the final mitigation goals and objectives; and the final hazard rankings. Ranking is

different than in other states because in Texas you have to develop two mitigation actions regardless of whether a hazard is ranked high, medium, or low. Only "Non Applicable" (NA) ranking is not required to have two mitigation actions. However, if there are too many NA rankings, you will need to defend these rankings to the State of Texas and FEMA reviewers.

- There were several differences in hazard rankings between the cities and counties. Laura asked the attendees about this and confirmed these differences are accurate since FEMA will likely notice these differences and known justifications are important.
- Ted Bowers (City of Bastrop) said that several of the hazard rankings need to be changed for the City of Bastrop, in particular the hurricane hazard. There were no City of Bastrop attendees at the second meeting. Janet Harrigan explained the reasoning for the ranking of hurricane hazard for her jurisdictions and noted that if FEMA paid out any funds to a jurisdiction for a hazard, that should help guide the ranking. Blake Clampffer (Bastrop County) explained the reasoning for Bastrop County's ranking was "high" for likely within 25 years, "medium" likely within 100 years, and "low" within 100+ years. Laura stated that the ranking generally is used to help prioritize the implementation of the mitigation actions.
- Ted Bowers requested that the City of Bastrop be able to re-rank their hazards. Laura asked that the City of Bastrop representatives work with Tetra Tech after today's meeting to re-rank their hazards.
- Survey Responses: Laura reviewed the number of responses for each jurisdiction. There were no survey responses for Mills County. Laura encouraged the attendees to review the special comments and read some of the responses, encouraging attendees to review them for possible recommendations for mitigation actions.
- One question from the survey was reviewed in particular: "What types of projects do you believe the county, state, and federal government agencies should be doing in order to reduce damage and disruption from hazard events within your community? Please rank each option as a high, medium, or low priority." Laura reviewed the slides for each jurisdiction and the patterns and anomalies from the various communities. All three counties had same top four priorities based on the survey results.
- Key point from these surveys is to keep in mind what your citizens felt were most important. This will be important when the jurisdictions are prioritizing the mitigation actions later on during this meeting.
- Mitigation Actions you need a minimum of two actions per ranked hazard (this is a requirement). You can have more than two actions. Mitigation actions can cover multiple hazards. This is encouraged especially on medium and high ranked hazards. Carrie Valentine has been working to get these mitigation actions ready for this meeting. All jurisdictions in this group had mitigation actions to cover all goals and objectives.
- The Mitigation Action Spreadsheet is in the individual folders for each jurisdiction. This lists the
 projects which attendees will rank during today's meeting. Laura reviewed the significance of each
 column on the spreadsheet. The action number is simply a reference number, not a ranking number.
 The mitigation actions from the existing plan were handed out at the first meeting. The jurisdictions
 had previously marked whether mitigation actions would be carried forward and any actions carried
 forward are included in this spreadsheet. The priority column is per the mitigation action worksheet
 scoring that each jurisdiction prepared previously. Each jurisdiction may or may not rank these similar

today, based in part on public feedback from survey. If actions are shaded in gray, the action is either integrated, duplicate, or not typically a mitigation action. The estimated cost column is a ballpark figure. FEMA likes to see a combination of short-, medium-, and long-term projects. The responsible party should be a department or agency instead of an individual.

- Laura explained that one mitigation action can cover several hazards. Sometimes Tetra Tech combined several mitigation actions to make them a clearer, actionable action. Laura said if these modifications are not accurate to let Laura know. She reminded the attendees they can update the mitigation action list anytime up until submittal and can also modify the plan at any point after the plan is adopted.
- Mitigation Actions Ranking Process. Laura instructed the attendees how to rank the mitigation actions with 1 as the highest. Laura asked the jurisdictions to rank numerically all the mitigation actions. Laura asked that each jurisdiction return only one sheet to her at the end of this process.
 - For ranking: Only community representatives can vote for the mitigation actions for that community. For the county, either only the county representatives can vote, or the communities and county representatives can vote. This decision is up to each county.
 - Blake Clampffer asked if a completion date is required. Laura said this was not necessary.
 - Laura explained that ranking and order of implementation can change in the future based on changing conditions (funding sources, current disasters, etc.). There is no punitive action if the jurisdiction ends up implementing action #15 before #1 (for example).
 - The attendees broke into small groups. Afterwards, Laura collected all the ranked spreadsheets and said this data would be compiled.
 - Gray shaded actions at the bottom of the list indicate that they are either not carried forwards, or combined into other actions (especially if they are maintenance actions because these are not covered under this plan).
- Next Steps in the Plan Development
 - Between October 23 and November 6, a draft plan will be submitted to the counties for their review. The counties will have two weeks to review and should get comments back to Tetra Tech within that period. Yellow highlighted areas mean there is an information gap that will be filled in. The tight turn-around time was dictated by a schedule set by the lapsing of the existing plan and grant delays. The schedule was not dictated by the TCRFC planning team. Laura reviewed the specific dates the plans will be given to each county.
 - Laura alerted the attendees to watch for an email with a link to an FTP site to download the draft plan.
 - The draft plan will be approximately 350 pages and is based on FEMA requirements. All State of Texas and FEMA requirements must be met in the plan.
 - The State of Texas may ask for clarification or additional questions once reviewed. Therefore, the time it takes for the state to review is outside of the planning team's control.
 - Laura said once the plan is accepted by the State of Texas, it is sent to FEMA for review and approval. Once FEMA approves the plan, the plan is granted an Approval Pending Adoption (APA) status. This letter usually comes from FEMA to the State, and then the State sends the letter to the county top elected official. Once this APA status is granted, there is a 6-month period during which the jurisdiction has to officially review, approve, and adopt the plan.

According to current regulations, each participating jurisdiction has to officially adopt the plan by the process specific to their jurisdiction. This adoption documentation must be submitted to FEMA within that 6-month period.

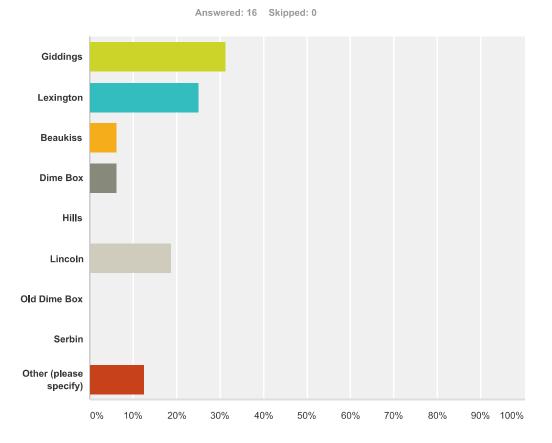
- Laura thanked all the attendees for coming to these meetings and all the work that the jurisdictions have done during this process. This is the last of three meetings.
- Laura worked with James Altgelt and Ted Bowers from the City of Bastrop to re-rank the hazards for the city.
- Adjournment

Lee County Communities, Hazard Mitigation Plan

Public Involvement/Participation

A partnership of local governments and other stakeholders in Lee County are working together to create a Lee County Hazard Mitigation Plan. Community input and involvement is instrumental in the development of a mitigation plan update that truly reflects the perceptions and needs of Lee County residents.

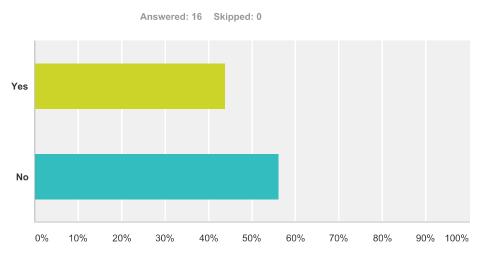
We have developed a community survey and would like as much input from Lee County residents, businesses, and interested citizens as possible. Please take a few minutes to fill out this survey so that your ideas may become a part of the plan to make Lee County a safer and more resilient county!


Community Survey Link:

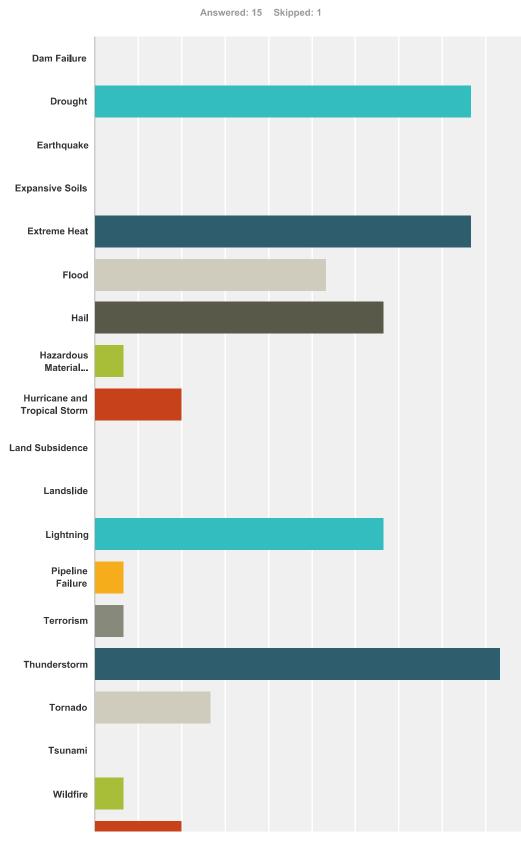
https://www.surveymonkey.com/s/LeeCountyHMPCommunitySurvey

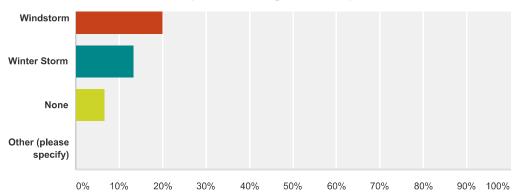
If you have any questions, please don't hesitate to contact:

Laura Johnston at <u>laura.johnston@tetratech.com</u> or 303-312-8807

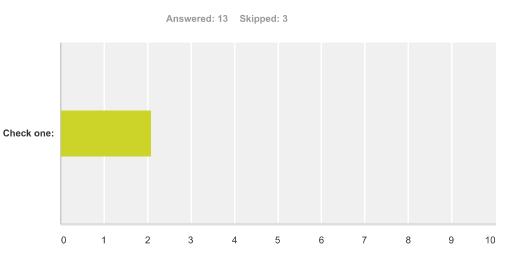


Q1 Where in Lee County do you live?

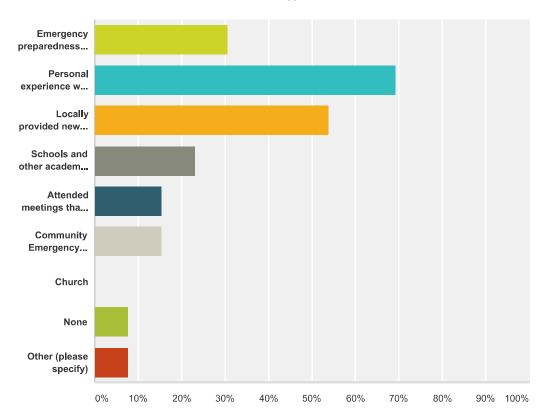

Answer Choices	Responses	
Giddings	31.25%	5
Lexington	25.00%	4
Beaukiss	6.25%	1
Dime Box	6.25%	1
Hills	0.00%	0
Lincoln	18.75%	3
Old Dime Box	0.00%	0
Serbin	0.00%	0
Other (please specify)	12.50%	2
Total		16


Q2 Do you work in Lee County?

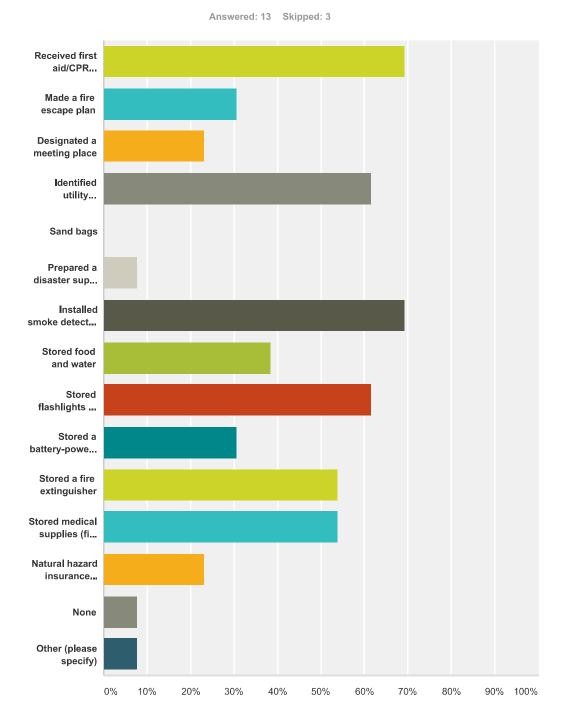
Answer Choices	Responses
Yes	43.75% 7
No	56.25% 9
Total	16


Q3 Which of the following hazard events have you or has anyone in your household experienced in the past 20 years within Lee County? (Check all that apply)

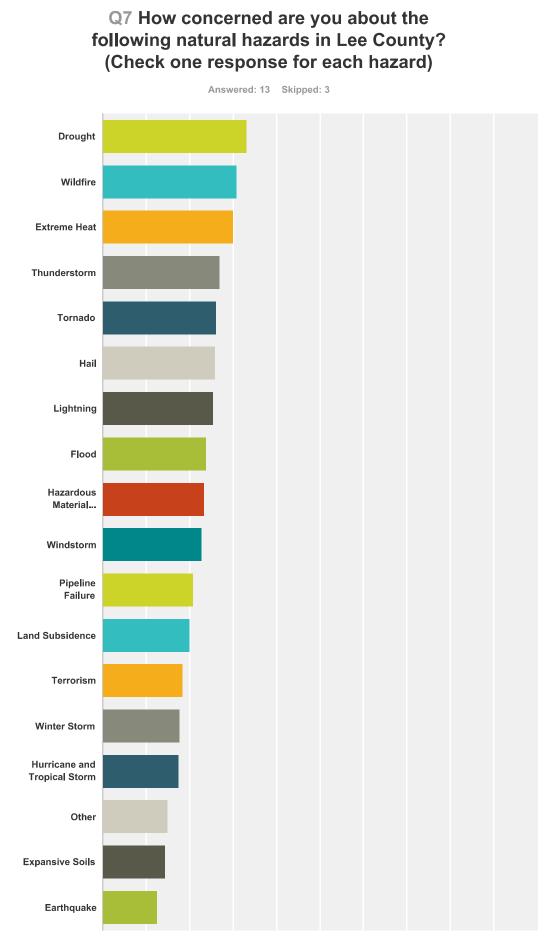
wer Choices	Responses	
Dam Failure	0.00%	
Drought	86.67%	
Earthquake	0.00%	
Expansive Soils	0.00%	
Extreme Heat	86.67%	
Flood	53.33%	
Hail	66.67%	
Hazardous Material Release	6.67%	
Hurricane and Tropical Storm	20.00%	
Land Subsidence	0.00%	
Landslide	0.00%	
Lightning	66.67%	
Pipeline Failure	6.67%	
Terrorism	6.67%	
Thunderstorm	93.33%	
Tornado	26.67%	
Tsunami	0.00%	
Wildfire	6.67%	
Windstorm	20.00%	
Winter Storm	13.33%	
None	6.67%	
Other (please specify)	0.00%	
al Respondents: 15		

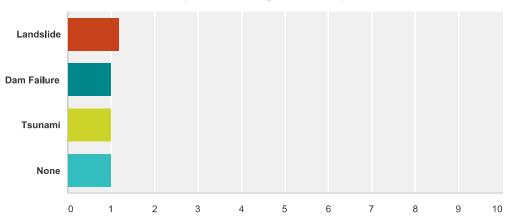

Q4 How prepared is your household to deal with a natural hazard event?

	Not at all prepared	Somewhat prepared	Adequately prepared	Well prepared	Very well prepared	Total	Weighted Average
Check	15.38%	69.23%	7.69%	7.69%	0.00%		
one:	2	9	1	1	0	13	2.08


Q5 Which of the following have provided you with useful information to help you be prepared for a natural hazard event? (Check all that apply)

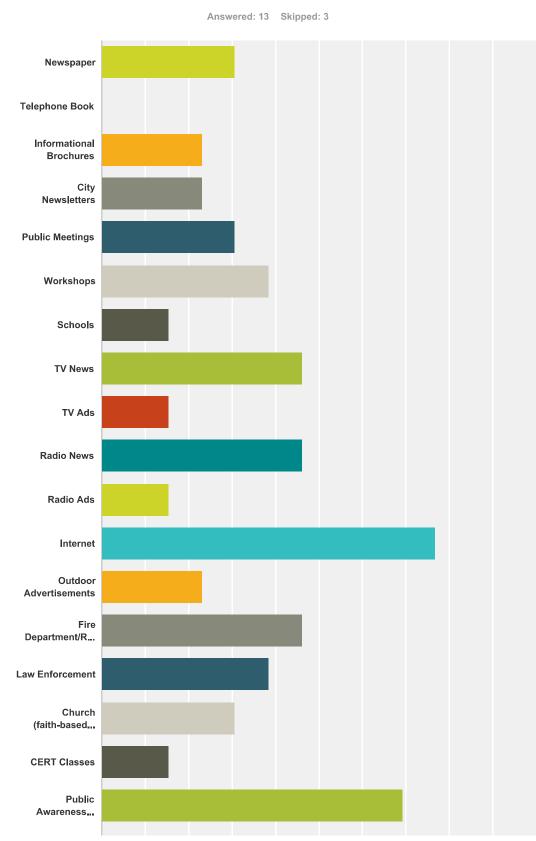
Answered: 13 Skipped: 3

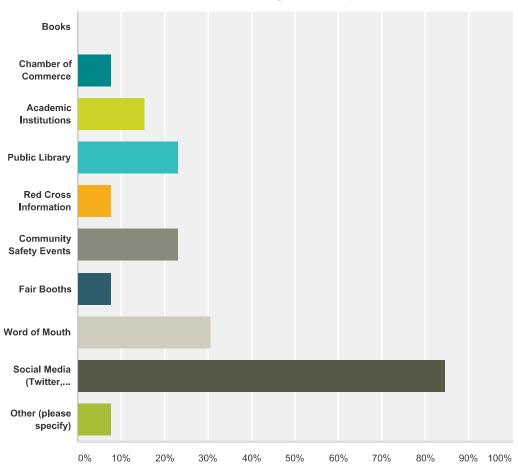

swer Choices	Response	s
Emergency preparedness information from a government source (e.g., federal, state, or local emergency management)	30.77%	4
Personal experience with one or more natural hazards/disasters	69.23%	9
Locally provided news or other media information	53.85%	7
Schools and other academic institutions	23.08%	3
Attended meetings that have dealt with disaster preparedness	15.38%	2
Community Emergency Response Training (CERT)	15.38%	2
Church	0.00%	0
None	7.69%	1
Other (please specify)	7.69%	1
al Respondents: 13		


Q6 Which of the following steps has your household taken to prepare for a natural hazard event? (Check all that apply)

Answer Choices	Responses	
Received first aid/CPR training	69.23%	9
Made a fire escape plan	30.77%	4
Designated a meeting place	23.08%	3

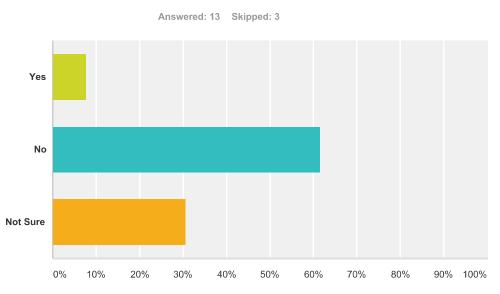
Identified utility shutoffs	61.54%	8
Sand bags	0.00%	0
Prepared a disaster supply kit	7.69%	1
Installed smoke detectors on each level of the house	69.23%	9
Stored food and water	38.46%	5
Stored flashlights and batteries	61.54%	8
Stored a battery-powered radio	30.77%	4
Stored a fire extinguisher	53.85%	7
Stored medical supplies (first aid kit, medications)	53.85%	7
Natural hazard insurance (Flood, Earthquake, Wildfire)	23.08%	3
None	7.69%	1
Other (please specify)	7.69%	1
Total Respondents: 13		



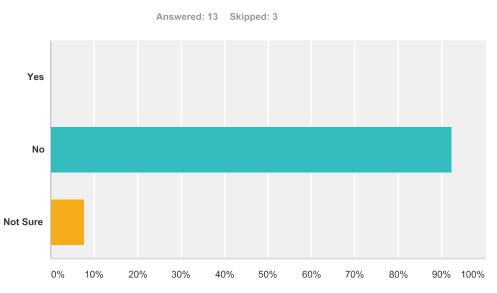

	Not Concerned	Somewhat Concerned	Concerned	Very Concerned	Extremely Concerned	Total	Weighted Average
Drought	7.69%	7.69%	38.46%	38.46%	7.69%		
Ũ	1	1	5	5	1	13	3
Wildfire	8.33%	33.33%	16.67%	25.00%	16.67%		
	1	4	2	3	2	12	3
Extreme Heat	15.38%	23.08%	15.38%	38.46%	7.69%		
	2	3	2	5	1	13	3
Thunderstorm	15.38%	15.38%	53.85%	15.38%	0.00%		
	2	2	7	2	0	13	2
Tornado	7.69%	30.77%	53.85%	7.69%	0.00%		
	1	4	7	1	0	13	2
Hail	8.33%	41.67%	33.33%	16.67%	0.00%		
	1	5	4	2	0	12	2
Lightning	15.38%	23.08%	53.85%	7.69%	0.00%		
	2	3	7	1	0	13	2
Flood	7.69%	46.15%	46.15%	0.00%	0.00%		
	1	6	6	0	0	13	2
Hazardous Materia	33.33%	25.00%	25.00%	8.33%	8.33%		
Release	4	3	3	1	1	12	2
Windstorm	27.27%	27.27%	36.36%	9.09%	0.00%		
	3	3	4	1	0	11	2
Pipeline Failure	53.85%	0.00%	30.77%	15.38%	0.00%		
	7	0	4	2	0	13	2
Land Subsidence	40.00%	40.00%	10.00%	0.00%	10.00%		
	4	4	1	0	1	10	2
Terrorism	50.00%	33.33%	8.33%	0.00%	8.33%		
	6	4	1	0	1	12	1
Winter Storm	46.15%	30.77%	23.08%	0.00%	0.00%		
	6	4	3	0	0	13	1
Hurricane and Tropical	58.33%	16.67%	16.67%	8.33%	0.00%		
Storm	7	2	2	1	0	12	1
Other	75.00%	0.00%	25.00%	0.00%	0.00%		
0.00	3	0.0078	1	0	0	4	1
Expansive Soils	63.64%	27.27%	9.09%	0.00%	0.00%		
	7	3	1	0	0	11	1

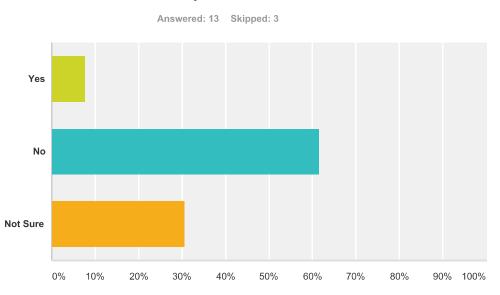
Earthquake	83.33%	8.33%	8.33%	0.00%	0.00%		
	10	1	1	0	0	12	1.25
Landslide	81.82%	18.18%	0.00%	0.00%	0.00%		
	9	2	0	0	0	11	1.18
Dam Failure	100.00%	0.00%	0.00%	0.00%	0.00%		
	12	0	0	0	0	12	1.00
Tsunami	100.00%	0.00%	0.00%	0.00%	0.00%		
	11	0	0	0	0	11	1.00
None	100.00%	0.00%	0.00%	0.00%	0.00%		
	3	0	0	0	0	3	1.00

Q8 Which of the following methods do you think are most effective for providing hazard and disaster information? (Check all that apply)


12 / 43

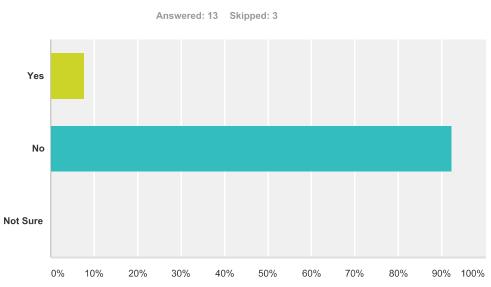
nswer Choices		Responses	
Newspaper	30.77%	4	
Telephone Book	0.00%	0	
Informational Brochures	23.08%	3	
City Newsletters	23.08%	3	
Public Meetings	30.77%	4	
Workshops	38.46%	5	
Schools	15.38%	2	
TV News	46.15%	6	
TV Ads	15.38%	2	
Radio News	46.15%	6	
Radio Ads	15.38%	2	
Internet	76.92%	10	
Outdoor Advertisements	23.08%	3	
Fire Department/Rescue	46.15%	6	
Law Enforcement	38.46%	Ę	


Church (faith-based institutions)		4
CERT Classes	15.38%	2
Public Awareness Campaign (e.g., Flood Awareness Week, Winter Storm Preparedness Month)	69.23%	9
Books	0.00%	0
Chamber of Commerce	7.69%	1
Academic Institutions	15.38%	2
Public Library	23.08%	3
Red Cross Information	7.69%	1
Community Safety Events		3
Fair Booths	7.69%	1
Word of Mouth		4
Social Media (Twitter, Facebook, Linkdin)		11
Other (please specify)	7.69%	1
Total Respondents: 13		

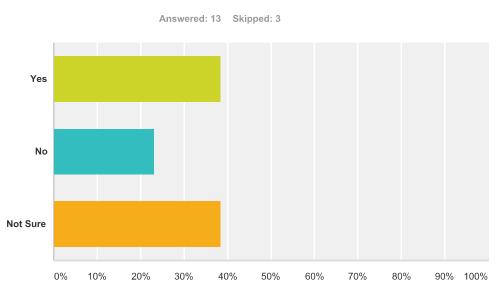


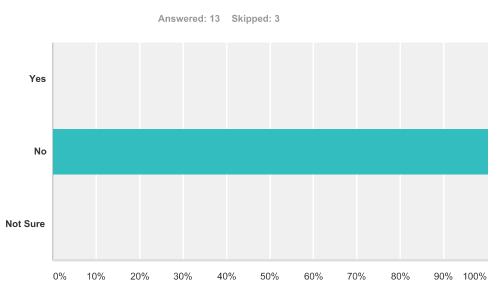
Answer Choices	Responses
Yes	7.69% 1
No	61.54% 8
Not Sure	30.77% 4
Total	13

Q10 Do you have flood insurance?


Answer Choices	Responses
Yes	0.00% 0
No	92.31% 12
Not Sure	7.69% 1
Total	13

Q11 Is your property located near an earthquake fault?


Answer Choices	Responses	
Yes	7.69%	1
No	61.54%	8
Not Sure	30.77%	4
Total		13

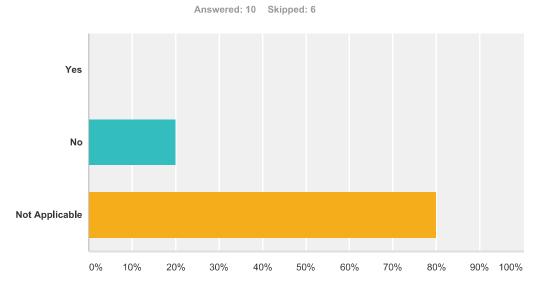

Answer Choices	Responses
Yes	7.69% 1
No	92.31% 12
Not Sure	0.00% 0
Total	13

Q13 Is your property located in an area at risk for wildfires?

Answer Choices	Responses
Yes	38.46% 5
Νο	23.08% 3
Not Sure	38.46% 5
Total	13

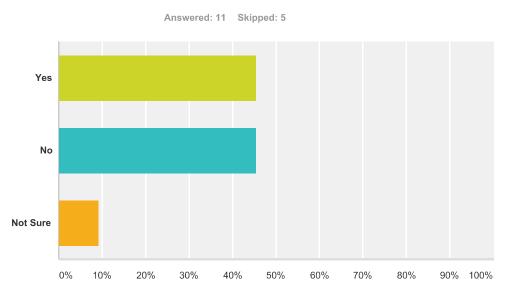
Q14 Have you ever had problems getting homeowners or renters insurance due to risks from natural hazards?

Answer Choices	Responses	
Yes	0.00%	0
No	100.00%	13
Not Sure	0.00%	0
Total		13

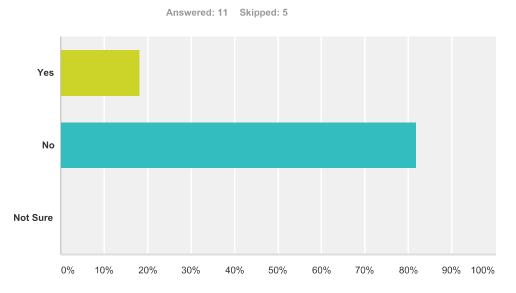

Q15 Do you have any special access or functional needs within your household that would require early warning or specialized response during disasters?

 Yes
 Image: Stripped: 3

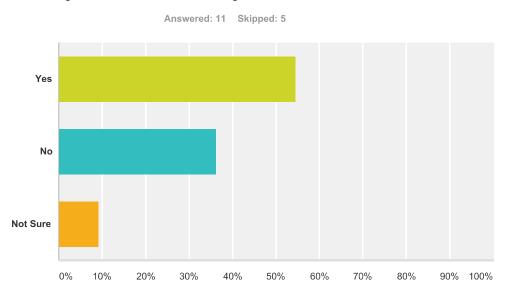
 No
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
 100%


Answer Choices	Responses
Yes	15.38% 2
No	84.62% 11
Total	13

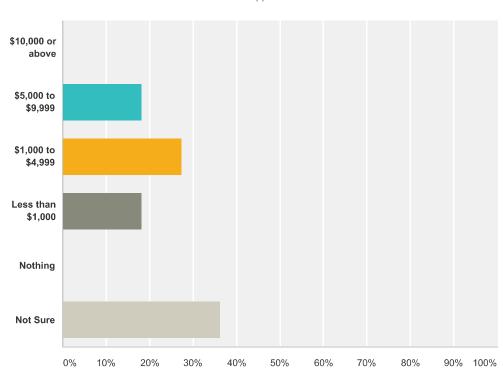
Q16 If the answer to question # 15 was yes, would you like County Emergency Management personnel to contact you regarding your access and functional needs? If yes, please enter your contact information in the following text box.


Answer Choices	Responses	
Yes	0.00%	0
No	20.00%	2
Not Applicable	80.00%	8
Total		10

Q17 When you moved into your home, did you consider the impact a natural disaster could have on your home?

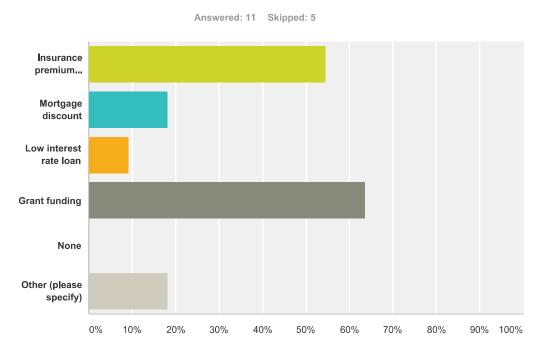

Answer Choices	Responses	
Yes	45.45%	5
No	45.45%	5
Not Sure	9.09%	1
Total		11

Q18 Was the presence of a natural hazard risk zone (e.g., dam failure zone, flood zone, landslide hazard area, high fire risk area) disclosed to you by a real estate agent, seller, or landlord before you purchased or moved into your home?

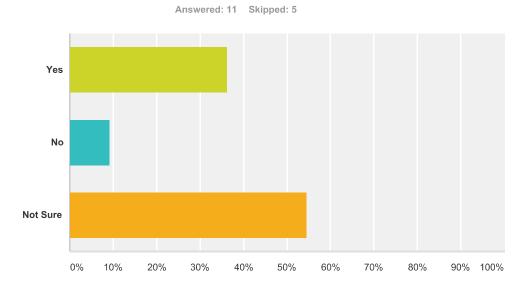

Answer Choices	Responses	
Yes	18.18%	2
No	81.82%	9
Not Sure	0.00%	0
Total		11

Q19 Would the disclosure of this type of natural hazard risk information influence your decision to buy or rent a home?

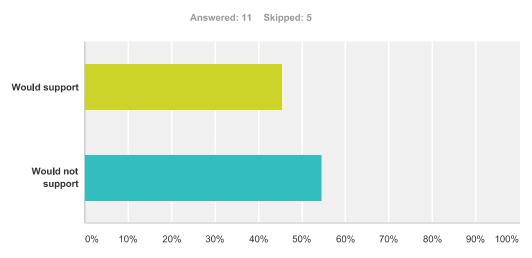
Answer Choices	Responses	
Yes	54.55%	6
No	36.36%	4
Not Sure	9.09%	1
Total		11


Q20 How much money would you be willing to spend to retrofit your home to reduce risks associated with natural disasters? (for example, by clearing brush and plant materials from around your home to create a "defensible space" for wildfire, performing seismic upgrades, or replacing a combustible roof with non-combustible roofing)

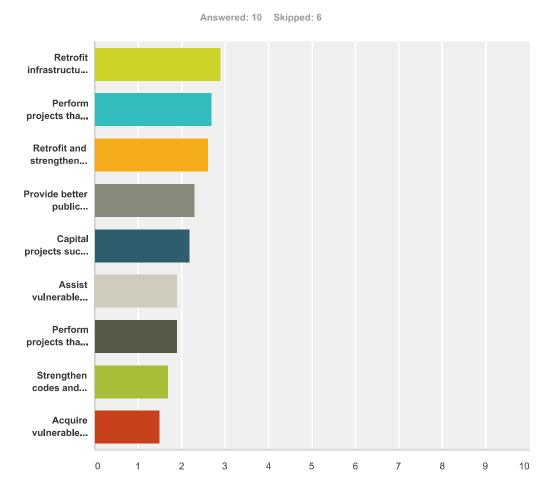
Answer Choices	Responses
\$10,000 or above	0.00% 0
\$5,000 to \$9,999	18.18% 2
\$1,000 to \$4,999	27.27% 3
Less than \$1,000	18.18% 2
Nothing	0.00% 0
Not Sure	36.36% 4
Total	11


Answered: 11 Skipped: 5

Q21 Which of the following incentives would encourage you to spend money to retrofit your home to protect against natural disasters? (Check all that apply)

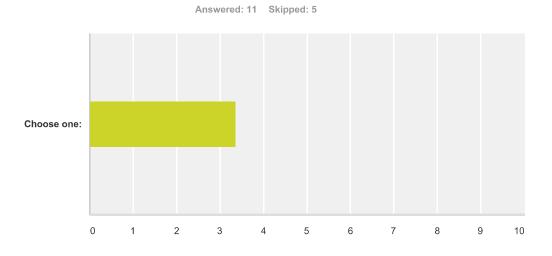

Answer Choices	Responses	
Insurance premium discount	54.55%	6
Mortgage discount	18.18%	2
Low interest rate loan	9.09%	1
Grant funding	63.64%	7
None	0.00%	0
Other (please specify)	18.18%	2
Total Respondents: 11		

Q22 If your property were located in a designated "high hazard" area or had received repetitive damages from a natural hazard event, would you consider a "buyout" offered by a public agency?

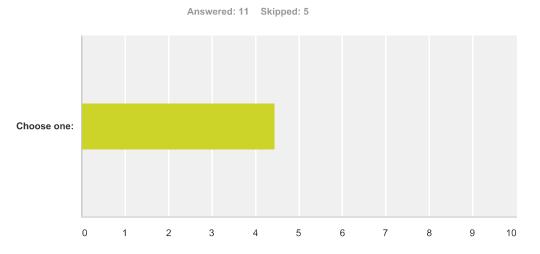

Answer Choices	Responses	
Yes	36.36%	4
No	9.09%	1
Not Sure	54.55%	6
Total		11

Q23 Would you support the regulation (restriction) of land uses within known high hazard areas?

Answer Choices	Responses
Would support	45.45% 5
Would not support	54.55% 6
Total	11

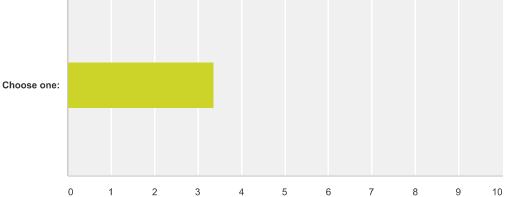

Q24 What types of projects do you believe the County, State or Federal government agencies should be doing in order to reduce damage and disruption from hazard events within Lee County? Please rank each option as a high, medium or low priority.

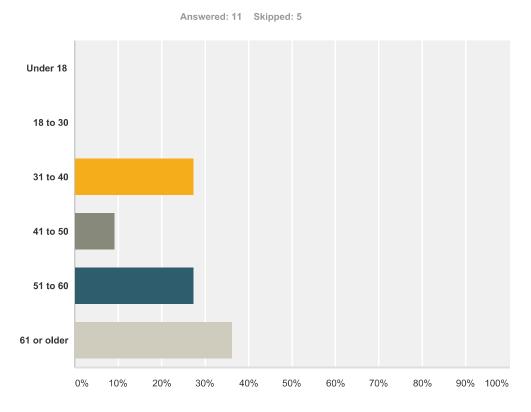
	High	Medium	Low	Total	Weighted Average
Retrofit infrastructure such as roads, bridges, drainage facilities, levees, water supply, waste water and power supply facilities.	90.00% 9	10.00% 1	0.00% 0	10	2.9
Perform projects that restore the natural environments capacity to absorb the impacts from natural azards.	70.00%	30.00% 3	0.00% 0	10	2.7
Retrofit and strengthen essential facilities such as police, fire, schools and hospitals.	70.00% 7	20.00% 2	10.00% 1	10	2.6
Provide better public information about risk, and the exposure to hazards within the operational area.	50.00% 5	30.00% 3	20.00% 2	10	2.3
Capital projects such as dams, levees, flood walls, drainage improvements and bank stabilization projects.	30.00% 3	60.00% 6	10.00% 1	10	2.2
Assist vulnerable property owners with securing funding for mitigation.	20.00% 2	50.00% 5	30.00% 3	10	1.9


Perform projects that mitigate the potential impacts from climate change.	30.00%	30.00%	40.00%		
	3	3	4	10	1.90
Strengthen codes and regulations to include higher regulatory standards in hazard areas.	0.00%	70.00%	30.00%		
	0	7	3	10	1.70
Acquire vulnerable properties and maintain as open space.	0.00%	50.00%	50.00%		
	0	5	5	10	1.50

Q25 Please indicate how you feel about the following statement: It is the responsibility of government (local, state and federal) to provide education and programs that promote citizen actions that will reduce exposure to the risks associated with natural hazards.

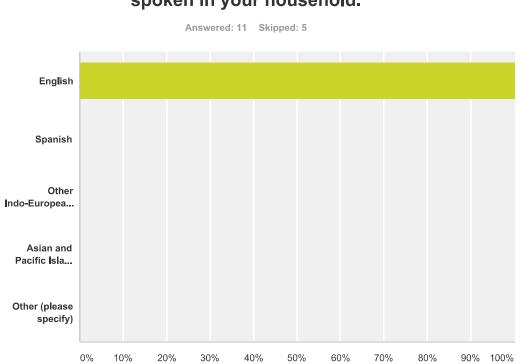
	Strongly Disagree	Somewhat Disagree	Neither Agree nor Disagree	Somewhat Agree	Strongly Agree	Total	Weighted Average
Choose	0.00%	18.18%	27.27%	54.55%	0.00%		
one:	0	2	3	6	0	11	3.36


Q26 Please indicate how you feel about the following statement: It is my responsibility to educate myself and take actions that will reduce my exposure to the risks associated with natural hazards.


	Strongly Disagree	Somewhat Disagree	Neither Agree nor Disagree	Somewhat Agree	Strongly Agree	Total	Weighted Average
Choose	0.00%	0.00%	0.00%	54.55%	45.45%		
one:	0	0	0	6	5	11	4.45

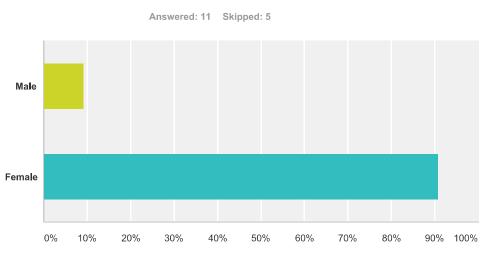
Q27 Please indicate how you feel about the following statement:Information about the risks associated with natural hazards is readily available and easy to locate.

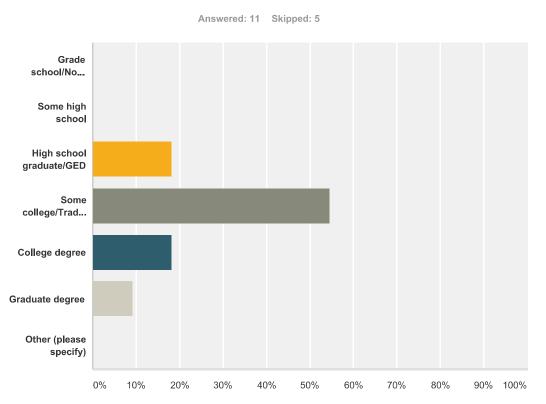
Answered: 11 Skipped: 5



	Strongly Disagree	Somewhat Disagree	Neither Agree nor Disagree	Somewhat Agree	Strongly Agree	Total	Weighted Average
Choose	0.00%	27.27%	18.18%	45.45%	9.09%		
one:	0	3	2	5	1	11	3.36

Q28 Please indicate your age range:

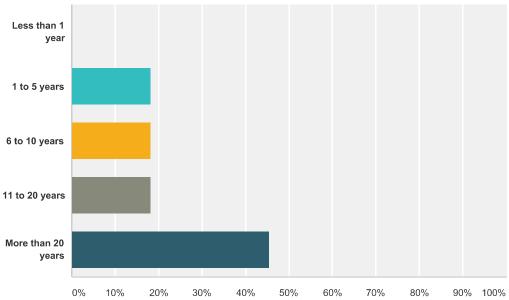

Answer Choices	Responses	
Under 18	0.00%	0
18 to 30	0.00%	0
31 to 40	27.27%	3
41 to 50	9.09%	1
51 to 60	27.27%	3
61 or older	36.36%	4
Total		11


Answer Choices	Responses
English	100.00% 11
Spanish	0.00% 0
Other Indo-European Languages	0.00% 0
Asian and Pacific Island Languages	0.00% 0
Other (please specify)	0.00% 0
Total	11

Q29 Please indicate the primary language spoken in your household.

Q30 Please indicate your gender:

Answer Choices	Responses
Male	9.09% 1
Female	90.91% 10
Total	11

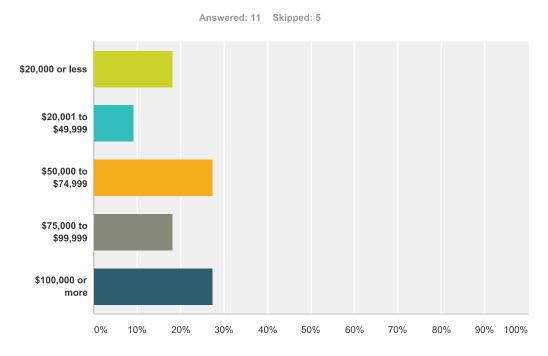


Q31 Please indicate your highest level of education.

nswer Choices	Responses	
Grade school/No schooling	0.00%	0
Some high school	0.00%	0
High school graduate/GED	18.18%	2
Some college/Trade school	54.55%	6
College degree	18.18%	2
Graduate degree	9.09%	1
Other (please specify)	0.00%	0
otal		11

Q32 How long have you lived in Lee County?

Answered: 11 Skipped: 5

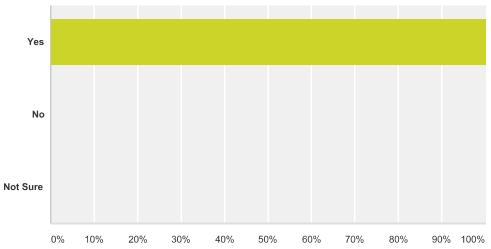

Answer Choices	Responses	
Less than 1 year	0.00%	0
1 to 5 years	18.18%	2
6 to 10 years	18.18%	2
11 to 20 years	18.18%	2
More than 20 years	45.45%	5
Total		11

Q33 Do you own or rent your place of residence?

 Own
 Answered: 11
 Skipped: 5

 Rent
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
 100%

Answer Choices	Responses
Own	90.91% 10
Rent	9.09% 1
Total	11



Q34 How much is your gross household income?

Answer Choices	Responses
\$20,000 or less	18.18% 2
\$20,001 to \$49,999	9.09% 1
\$50,000 to \$74,999	27.27% 3
\$75,000 to \$99,999	18.18% 2
\$100,000 or more	27.27% 3
Total	11

Q35 Do you have regular access to the Internet?

Answered: 11 Skipped: 5

Answer Choices	Responses
Yes	100.00% 11
No	0.00% 0
Not Sure	0.00% 0
Total	11

Q36 Comments

Answered: 2 Skipped: 14

Lee County Hazard Mitigation Plan Update

APPENDIX D. PLAN ADOPTION RESOLUTIONS FROM PLANNING PARTNERS

APPENDIX D. PLAN ADOPTION RESOLUTIONS FROM PLANNING PARTNERS

To Be Provided With Final Release

Lee County Hazard Mitigation Plan Update

APPENDIX E. EXAMPLE PROGRESS REPORT

APPENDIX E. EXAMPLE PROGRESS REPORT

Lee County Hazard Mitigation Plan Update Annual Progress Report

Reporting Period: 2016-2020

Background: Lee County and the Cities of Giddings and Lexington developed a hazard mitigation plan to reduce risk from all hazards by identifying resources, information, and strategies for risk reduction. The federal Disaster Mitigation Act of 2000 requires state and local governments to develop hazard mitigation plans as a condition for federal disaster grant assistance. To prepare the plan, the participating partners organized resources, assessed risks from natural hazards within the planning area, developed planning goals and objectives, reviewed mitigation alternatives, and developed an action plan to address probable impacts from natural hazards. By completing this process, these jurisdictions maintained compliance with the Disaster Mitigation Act, achieving eligibility for mitigation grant funding opportunities afforded under FEMA's Hazard Mitigation Assistance grants. The plan can be viewed on-line at:

http://www.co.lee.tx.us/

Summary Overview of the Plan's Progress: The performance period for the Hazard Mitigation Plan became effective on ______, 2016, with the final approval of the plan by FEMA. The initial performance period for this plan will be 5 years, with an anticipated update to the plan to occur before ______, 2020. As of this reporting period, the performance period for this plan is considered to be ___% complete. The Hazard Mitigation Plan has targeted 25 hazard mitigation actions to be pursued during the 5-year performance period. As of the reporting period, the following overall progress can be reported:

- ____out of ____actions (___%) reported ongoing action toward completion
- _____ out of ____ actions (___%) were reported as being complete
- ____out of ____actions (____%) reported no action taken

Purpose: The purpose of this report is to provide an annual update on the implementation of the action plan identified in the Lee County Hazard Mitigation Plan Update. The objective is to ensure that there is a continuing and responsive planning process that will keep the Hazard Mitigation Plan dynamic and responsive to the needs and capabilities of the partner jurisdictions. This report discusses the following:

- Natural hazard events that have occurred within the last year
- Changes in risk exposure within the planning area (all of Lee County)
- Mitigation success stories
- Review of the action plan
- Changes in capabilities that could impact plan implementation
- Recommendations for changes/enhancement
- Monitor the incorporation of the Mitigation Plan into planning mechanisms.

The Hazard Mitigation Plan Steering Committee: The Hazard Mitigation Plan Steering Committee, made up of planning partners and stakeholders within the planning area, reviewed and approved this progress report at its annual meeting held on _____, 201_. It was determined through the plan's

development process that a Steering Committee would remain in service to oversee maintenance of the plan. At a minimum, the Steering Committee will provide technical review and oversight on the development of the annual progress report. It is anticipated that there will be turnover in the membership annually, which will be documented in the progress reports. For this reporting period, the Steering Committee membership is as indicated in Table 1.

TABLE 1. STEERING COMMITTEE MEMBERS					
Name	Title	Jurisdiction/Agency			

- •
- •
- -----

Changes in Risk Exposure in the Planning Area: (Insert brief overview of any natural hazard event in the planning area that changed the probability of occurrence or ranking of risk for the hazards addressed in the hazard mitigation plan)

Mitigation Success Stories: (Insert brief overview of mitigation accomplishments during the reporting period)

Review of the Action Plan: Table 2 reviews the action plan, reporting the status of each action. Reviewers of this report should refer to the Hazard Mitigation Plan for more detailed descriptions of each action and the prioritization process.

Address the following in the "status" column of the following table:

- Was any element of the action carried out during the reporting period?
- If no action was completed, why?
- Is the timeline for implementation for the action still appropriate?

If the action was completed, does it need to be changed or removed from the action plan?

	TABLE 2. ACTION PLAN MATRIX					
Actio n No.	Title	Action Taken? (Yes or No)	Timeline	Priority	Status	Status $(\sqrt{, O, X})$
LEE C	OUNTY					
1	Purchase NOAA All Hazard Radios					
2	Use Fire-Resistant Construction Techniques					
3	Improve Household Disaster Preparedness					
4	Integrate Mitigation into Local Planning					
5	Improve Flood Risk Assessment					
6	Hazard Education for Homeowners					
7	Monitor Drought Conditions					
8	Assist Vulnerable Populations During Extreme Temperatures					
9	Incorporating Flood Mitigation in Local Planning					
10	Drainage System and Flood Control Structures					
11	Assess Vulnerability to Severe Wind					
12	Use the application of calcium soil stabilizers in road construction					
CITY	CITY OF GIDDINGS					
1	Update Building Codes					
2	Purchase NOAA All Hazard Radios					
3	Water Conservation Measures					

	TABLE 2. ACTION PLAN MATRIX						
Actio n No.	Title	Action Taken? (Yes or No)	Timeline	Priority	Status	Status $(\sqrt{, O, X})$	
4	Upgrade Underground Water Lines						
5	Outdoor Warning Siren						
6	Hazard Education for Homeowners						
CITY C	DF LEXINGTON	:	<u>:</u>	:	1	1	
1	Monitor Drought Conditions						
2	Incorporating Flood Mitigation in Local Planning						
3	Drainage Systems and Flood Control Structures						
4	Assess Vulnerability to Severe Wind						
5	Purchase NOAA All Hazard Radios						
6	Hazard Education and Risk Awareness for Homeowners						
7	Update Building Codes						
Comple	Completion status legend:						
	\checkmark = Project Completed						
	O = Action ongoing toward completion						
	X = No progress at this time						


Changes That May Impact Implementation of the Plan: (*Insert brief overview of any significant changes in the planning area that would have a profound impact on the implementation of the plan. Specify any changes in technical, regulatory and financial capabilities identified during the plan's development*)

Recommendations for Changes or Enhancements: Based on the review of this report by the Hazard Mitigation Plan Steering Committee, the following recommendations will be noted for future updates or revisions to the plan:

- _____
- _____
- •
- •
- •

Public review notice: The contents of this report are considered to be public knowledge and have been prepared for total public disclosure. Copies of the report have been provided to the governing boards of all planning partners and to local media outlets and the report is posted on the Lee County Hazard Mitigation Plan website. Any questions or comments regarding the contents of this report should be directed to:

Insert Contact Info Here

